Skip to main content
Log in

Thermodynamic properties of pyrochlore-like rare earth triple oxides CaLa2MoO7 and MgLa2MoO7

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The temperature dependence of the heat capacity of pyrochlore-like compounds CaLa2MoO7 and MgLa2MoO7 has been investigated over the range of 4.4–320 K by adiabatic calorimetry. The main thermodynamic functions and fractal properties of the compounds over the range of 5–320 K have been determined based on the experimental data. We have revealed the heat capacity anomaly in the sample CaLa2MoO7 in the area below 10 K. Standard thermodynamic functions at T = 298.15 K are: for CaLa2MoO7 C p,m(298.15) = 222.1 ± 0.4 J mol−1K−1, S m(298.15) = 246.0 ± 0.8 J mol−1K−1, H m(298.15)−H m(0) = 39.20 ± 0.10 kJ mol−1; for MgLa2MoO7 C p,m(298.15) = 216.6 ± 0.3 J mol−1K−1, S m(298.15) = 231.1 ± 0.6 J mol−1K−1, H m(298.15) − H m(0) = 37.09 ± 0.08 kJ mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Subramanian MA, Aravamudan G, Subba Rao GV. Oxide pyrochlores—a review. Prog Solid State Chem. 1983;15:55–143. doi:10.1016/0079-6786(83)90001-8.

    Article  CAS  Google Scholar 

  2. Grzechnik A, Morgenroth W, Friese K. Disordered pyrochlore CsMgInF6 at high pressures. J Solid State Chem. 2009;182:1792–7. doi:10.1016/j.jssc.2009.04.026.

    Article  CAS  Google Scholar 

  3. Shlyakhtina AV, Shcherbakova LG. Polymorphism and high-temperature conductivity of Ln2M2O7 (Ln = Sm–Lu; M = Ti, Zr, Hf) pyrochlores. Solid State Ion. 2011;192:200–4. doi:10.1016/j.ssi.2010.07.013.

    Article  CAS  Google Scholar 

  4. Valant M, Davies PK. Crystal chemistry and dielectric properties of chemically substituted (Bi1.5Zn1.0Nb1.5)O7 and Bi2(Zn2/3Nb4/3)O7 pyrochlores. J Am Ceram Soc. 2000;83:147–53. doi:10.1111/j.1151-2916.2000.tb01163.x.

    Article  CAS  Google Scholar 

  5. Roth RS, Vanderah TA, Bordet P, Grey IE, Mumme WG, Cai L, Nino JC. Pyrochlore formation, phase relations, and properties in the CaO–TiO2–(Nb, Ta)2O5 systems. J Solid State Chem. 2008;181:406–14. doi:10.1016/j.jssc.2007.12.005.

    Article  CAS  Google Scholar 

  6. Nguyen B, Liu Y, Withers RL. Relaxor dielectric properties of a (Ca1.5Ti0.5)(NbTi)O7 ‘misplaced-displacive’ cubic pyrochlore synthesised via metallorganic decomposition. Solid State Commun. 2008;145:72–6. doi:10.1016/j.ssc.2007.09.026.

    Article  CAS  Google Scholar 

  7. Liu Y, Withers RL, Nguyen HB, Elliott K, Ren Q, Chen Z. Displacive disorder and dielectric relaxation in the stoichiometric bismuth-containing pyrochlores, Bi2MIIINbO7 (M = In and Sc). J Solid State Chem. 2009;182:2748–55. doi:10.1016/j.jssc.2009.07.007.

    Article  CAS  Google Scholar 

  8. Li Y, Zhu X, Kassab TA. Atomic-scale microstructures, Raman spectra and dielectric properties of cubic pyrochlore-typed Bi1.5MgNb1.5O7 dielectric ceramics. Ceram Int. 2014;40:8125–34. doi:10.1016/j.ceramint.2014.01.007.

    Article  CAS  Google Scholar 

  9. Karamat N, Ali I, Aziz A, Sher M, Ashiq MN. Electrical and dielectric studies of substituted holmium based pyrochlore zirconates nanomaterials. J Alloys Compd. 2015;652:83–90. doi:10.1016/j.jallcom.2015.08.189.

    Article  CAS  Google Scholar 

  10. Wuensch BJ, Eberman KW, Heremans C, Ku EM, Onnerud P, Yeo EME, Haile SM, Stalick JK, Jorgensen JD. Connection between oxygen-ion conductivity of pyrochlore fuel-cell materials and structural change with composition and temperature. Solid State Ion. 2000;129:111–33. doi:10.1016/S0167-2738(99)00320-3.

    Article  CAS  Google Scholar 

  11. Colomer MT, Maczka M. Mixed conductivity, structural and microstructural characterization of titania-doped yttria tetragonal zirconia polycrystalline/titania-doped yttria stabilized zirconia composite anode matrices. J Solid State Chem. 2011;184:365–72. doi:10.1016/j.jssc.2010.12.006.

    Article  CAS  Google Scholar 

  12. Besikiotis V, Knee CS, Ahmed I, Haugsrud R, Norby T. Crystal structure, hydration and ionic conductivity of the inherently oxygen-deficient La2Ce2O7. Solid State Ion. 2012;228:1–7. doi:10.1016/j.ssi.2012.08.023.

    Article  CAS  Google Scholar 

  13. Almeida RM, Paschoal CWA, Auletta JT, Kann ZR, Lufaso MW. Ionic conductivity in Bi2Sn2O7 ceramics. Ceram Int. 2012;38:1275–9. doi:10.1016/j.ceramint.2011.08.060.

    Article  CAS  Google Scholar 

  14. Kimura M, Nanamatsu S, Doi K, Matsushita S, Takahashi M. Electrooptic and piezoelectric properties of La2Ti2O7 single crystal. Jpn J Appl Phys. 1972;11:904. doi:10.1143/JJAP.11.904.

    Article  CAS  Google Scholar 

  15. Yamamoto JK, Bhalla AS. Piezoelectric properties of layered perovskite A2Ti2O7 (A = La and Nd) single-crystal fibers. J Appl Phys. 1991;70:4469–71. doi:10.1063/1.349078.

    Article  CAS  Google Scholar 

  16. Shao Z, Saitzek Z, Roussel P, Mentre O, Gheorghiu FP, Mitoseriu L, Desfeux R. Structural and dielectric/ferroelectric properties of (La1−x Nd x )2Ti2O7 synthesized by sol–gel route. J Solid State Chem. 2010;183:1652–62. doi:10.1016/j.jssc.2010.05.004.

    Article  CAS  Google Scholar 

  17. Zhang Y, Jia C, Su Z, Zhang W. The enhanced and color-tunable photoluminescence of Eu3+/V5+ co-doped Gd2Ti2O7 nanocrystals. J Alloys Compd. 2009;479:381–4. doi:10.1016/j.jallcom.2008.12.066.

    Article  CAS  Google Scholar 

  18. Sun Z, Zhang Q, Li Y, Wang H. Thermal stable La2Ti2O7:Eu3+ phosphors for blue-chip white LEDs with high color rendering index. J Alloys Compd. 2010;506:338–42. doi:10.1016/j.jallcom.2010.06.203.

    Article  CAS  Google Scholar 

  19. Mahesh SK, Prabhakar Rao P, Thomas M, Radhakrishnan AN, Koshy P. Photoluminescence characteristics of new stannate pyrochlore based red phosphors: CaLaSnNbO7: Eu3+. J Mater Sci Mater Electron. 2012;23:1605–9. doi:10.1007/s10854-012-0636-6.

    Article  CAS  Google Scholar 

  20. Francis LT, Prabhakar Rao P, Thomas M, Mahesh SK, Reshmi VR, Thampi VDS. New orange-red emitting phosphor La3NbO7:Eu3+ under blue excitation. Mater Lett. 2012;81:142–4. doi:10.1016/j.matlet.2012.05.008.

    Article  CAS  Google Scholar 

  21. Ege A, Ayvacikli M, Dinçer O, Satılmış US. Spectral emission of rare earth (Tb, Eu, Dy) doped Y2Sn2O7 phosphors. J Lumin. 2013;143:653–6. doi:10.1016/j.jlumin.2013.05.027.

    Article  CAS  Google Scholar 

  22. Youn HJ, Sogabe T, Randall CA, Shrout TR, Lanagan MT. Phase relations and dielectric properties in the Bi2O3–ZnO–Ta2O5 system. J Am Ceram Soc. 2001;84:2557–62. doi:10.1111/j.1151-2916.2001.tb01053.x.

    Article  CAS  Google Scholar 

  23. Krishnankutty K, Dayas KR. Synthesis and characterization of monoclinic rare earth titanates, RE2Ti2O7 (RE = La, Pr, Nd), by a modified SHS method using inorganic activator. Bull Mater Sci. 2008;31:907–18. doi:10.1007/s12034-008-0145-7.

    Article  CAS  Google Scholar 

  24. Ding J, Xiao Y, Lu Y, Tao T, Zhang Q. Effects of BaO sintering additive on dielectric properties of Y2Ti2O7 microwave dielectric ceramics. Rare Met. 2011;30:624–7. doi:10.1007/s12598-011-0359-z.

    Article  CAS  Google Scholar 

  25. Bissengaliyeva MR, Bekturganov NS, Gogol DB, Knyazev AV, Smolenkov YY, Taimassova ST, Balbekova BK, Babich BP. Synthesis and structure investigation of ternary oxides based on molybdenum and lanthanum. Mater Chem Phys. 2015;157:21–30. doi:10.1016/j.matchemphys.2015.03.008.

    Article  CAS  Google Scholar 

  26. Bissengaliyeva MR, Gogol DB, Taymasova ST, Bekturganov NS. Measurement of heat capacity by adiabatic calorimetry and calculation of thermodynamic functions of standard substances: copper, benzoic acid, and heptane (for calibration of an adiabatic calorimeter). J Chem Eng Data. 2011;56:195–204. doi:10.1021/je100658y.

    Article  CAS  Google Scholar 

  27. Sommers JA, Westrum EF Jr. Thermodynamics of the lanthanide halides I. Heat capacities and Schottky anomalies of LaCl3, PrCl3, and NdCl3 from 5 to 350 K. J Chem Thermodyn. 1976;8:1115–36. doi:10.1016/0021-9614(76)90119-1.

    Article  CAS  Google Scholar 

  28. Ghosh K, Ramakrishnan S, Chinchure AD, Marathe VR, Chandra G. Heat capacity studies in RPd2A13 (R = Ce, Pr, Nd and Sm) systems. Phys B. 1996;223&224:354–8. doi:10.1016/0921-4526(96)00121-4.

    Article  CAS  Google Scholar 

  29. Wosnitza J, Elsinger H, Hagel J, Wanka S, Schweitzer D. The specific heat of the two-dimensional organic superconductor κ-(BEDT-TTF)2Cu[N(CN)2]Br. Synth Met. 2001;120:705–6. doi:10.1016/S0379-6779(00)01168-1.

    Article  CAS  Google Scholar 

  30. Motoyama G, Watanabe M, Maeda K, Oda Y, Ueda K, Kohara T. Specific heat measurements of CePt3Si and Ce1+x Pt3+y Si1+z . J Magn Magn Mater. 2007;310:e126–8. doi:10.1016/j.jmmm.2006.10.517.

    Article  CAS  Google Scholar 

  31. He C, Zheng H, Mitchell JF, Foo ML, Cava RJ, Leighton C. Low temperature Schottky anomalies in the specific heat of LaCoO3: Defect-stabilized finite spin states. Appl Phys Lett. 2009;94:102514. doi:10.1063/1.3098374.

    Article  Google Scholar 

  32. Bissengaliyeva MR, Gogol DB, Bekturganov NS. Low temperature measurements of the heat capacity and thermodynamic functions of pseudo-malachite Cu5(PO4)2(OH)4. Thermochim Acta. 2012;532:139–44. doi:10.1016/j.tca.2010.11.035.

    Article  CAS  Google Scholar 

  33. Junod A, Bezinge A, Eckert D, Graf T, Müller J. Specific heat, magnetic susceptibility and superconductivity of YBa2Cu3O7-δ doped with iron. Phys C. 1988;152:495–504. doi:10.1016/0921-4534(88)90059-7.

    Article  CAS  Google Scholar 

  34. Vilminot S, Kuentzler R, Dossmann Y, Derory A, Drillon M. Superconductivity magnetism and low temperature specific heat in YBa2(Cu1−x Fex)3O7−δ with δ ≈ 0 and δ ≈ 1. Phys C. 1989;160:575–83. doi:10.1016/0921-4534(89)90437-1.

    Article  CAS  Google Scholar 

  35. Yu MK, Franck JP, Gygax S. Specific heat of a multiphase superconductor Bi1.71Pb0.43Sr1.71Ca2.14Cu3O10.29. Phys B. 1990;165&166:1339–40. doi:10.1016/S0921-4526(09)80255-X.

    Article  Google Scholar 

  36. Khan HR, Kuentzler R. Low temperature specific heat and superconductivity related to microstructure and magnetism of orthorhombic and tetragonal phases Y(1−x)Ho x Ba2Cu3O(7−δ) (x = 0, 0.5 and 1). Phys C. 1990;166:266–76. doi:10.1016/0921-4534(90)90405-4.

    Article  CAS  Google Scholar 

  37. Bernasconi A, Schilling A, Guo JD, Ott HR. Specific heat, magnetization and resistivity measurements on HoBa2Cu4O8. Phys C. 1990;166:393–8. doi:10.1016/0921-4534(90)90033-B.

    Article  CAS  Google Scholar 

  38. Loram JW, Mirza KA, Freeman PF. The electronic specific heat of YBa2(Cu1−x Zn x )3O7 from 300 K. Phys C. 1990;171:243–56. doi:10.1016/0921-4534(90)90137-4.

    Article  CAS  Google Scholar 

  39. Collocott SJ, Driver R, Andrikidis C. Specific heat of the ceramic superconductor Bi2Sr2CuO6 from 0.4 to 20 K. Phys C. 1991;173:117–24. doi:10.1016/0921-4534(91)90802-6.

    Article  CAS  Google Scholar 

  40. Jaime M, Movshovich R, Balatsky AV, Yoshizaki R. Heat capacity of Ni-doped Bi2Sr2CaCu2O8 single crystals. Phys B. 2000;284–288:1069–70. doi:10.1016/S0921-4526(99)02417-5.

    Article  Google Scholar 

  41. Nohara M, Suzuki H, Mangkorntong N, Takagi H. Impurity-induced gap renormalization in anisotropic superconductors: mixed-state specific heat of La2−x Sr x Cu1−y Zn y O4 and Y(Ni1−x Pt x )2B2C. Phys C. 2000;341–348:2177–80. doi:10.1016/S0921-4534(00)01259-4.

    Article  Google Scholar 

  42. Woodfield BF, Fisher RA, Phillips NE, Caspary R, Hellmann P, Steglich F, Wolf T. Equality of the entropies of the low-temperature zero-field upturn and the in-field Schottky anomalies in the specific heat of YBa2Cu3O7. Phys C. 1994;234:380–4. doi:10.1016/0921-4534(94)90589-4.

    Article  CAS  Google Scholar 

  43. Fisher RA, Gordon JE, Reklis SF, Wright DA, Emerson JP, Woodfield BF, McCarron EM III, Phillips NE. Magnetic-field dependence of the low-temperature specific heat of some high-Tc copper-oxide superconductors. Evidence for an H1/2T contribution in the mixed state. Phys C. 1995;252:237–63. doi:10.1016/0921-4534(95)00463-7.

    Article  CAS  Google Scholar 

  44. Mayama H, Okajima Y, Yamaya K. Anomalous electronic specific heat of Bi1.8Pb0.3Sr1.9CuO y . Phys C. 1997;282–287:1419–20. doi:10.1016/S0921-4534(97)00814-9.

    Article  Google Scholar 

  45. Xie L, Su TS, Li XG. Magnetic field dependence of Schottky anomaly in the specific heats of stripe-ordered superconductors La1.6−x Nd0.4Sr x CuO4. Phys C. 2012;480:14–8. doi:10.1016/j.physc.2012.04.037.

    Article  CAS  Google Scholar 

  46. Bolech M, Cordfunke EHP, van Genderen ACG, van der Laan RR, Janssen FJJG, van Miltenburg JC. The heat capacity and derived thermodynamic functions of La2Zr2O7 and Ce2Zr2O7 from 4 to 1000 K. J Phys Chem Solids. 1997;58:433–9. doi:10.1016/S0022-3697(06)00137-5.

    Article  CAS  Google Scholar 

  47. Lutique S, Javorsky P, Konings RJM, Krupa J-C, van Genderen ACG, van Miltenburg JC, Wastin F. The low-temperature heat capacity of some lanthanide zirconates. J Chem Thermodyn. 2004;36:609–18. doi:10.1016/j.jct.2004.03.017.

    Article  CAS  Google Scholar 

  48. Sedmidubsky D, Beneš O, Konings RJM. High temperature heat capacity of Nd2Zr2O7 and La2Zr2O7 pyrochlores. J Chem Thermodyn. 2005;37:1098–103. doi:10.1016/j.jct.2005.01.013.

    Article  CAS  Google Scholar 

  49. Fabrichnaya O, Kriegel MJ, Seidel J, Savinykh G, Ogorodova LP, Kiseleva IA, Seifert HJ. Calorimetric investigation of the La2Zr2O7, Nd2Zr2O7, Sm2Zr2O7 and LaYO3 compounds and CALPHAD assessment of the La2O3–Y2O3 system. Thermochim Acta. 2011;526:50–7. doi:10.1016/j.tca.2011.08.021.

    Article  CAS  Google Scholar 

  50. Johnson MB, James DD, Bourque A, Dabkowska HA, Gaulin BD, White MA. Thermal properties of the pyrochlore, Y2Ti2O7. J Solid State Chem. 2009;182:72–9. doi:10.1016/j.jssc.2008.12.027.

    Article  Google Scholar 

  51. Greedan JE, Raju NP, Wegner A, Gougeon P, Padiou J. A study of the structure and electronic and thermal properties of quasi-one-dimensional La3MoO7. J Solid State Chem. 1997;129:320–7. doi:10.1006/jssc.1996.7259.

    Article  CAS  Google Scholar 

  52. Nishimine H, Wakeshima M, Hinatsu Y. Structures, magnetic, and thermal properties of Ln3MoO7 (Ln = La, Pr, Nd, Sm, and Eu). J Solid State Chem. 2005;178:1221–9. doi:10.1016/j.jssc.2004.10.013.

    Article  CAS  Google Scholar 

  53. Wakeshima M, Hinatsu Y. Magnetic properties and structural transitions of orthorhombic fluorite-related compounds Ln3MO7 (Ln = rare earths, M = transition metals). J Solid State Chem. 2010;183:2681–8. doi:10.1016/j.jssc.2010.09.005.

    Article  CAS  Google Scholar 

  54. Greedan JE, Sato M, Yan X, Razavi FS. Spin-glass-like behavior in Y2Mo2O7, a concentrated, crystalline system with negligible apparent disorder. Solid State Commun. 1986;59:895–7. doi:10.1016/0038-1098(86)90652-6.

    Article  CAS  Google Scholar 

  55. Sato M, Greedan JE. Pyrochlore solid solutions (La x Y1−x )2Mo2O7, x = 0.0–0.5. Spin-glass-like behavior. J Solid State Chem. 1987;67:248–53. doi:10.1016/0022-4596(87)90360-4.

    Article  CAS  Google Scholar 

  56. Greedan JE, Reimers JN, Stager CV, Penny SL. Neutron-diffraction study of magnetic ordering in the pyrochlore series R2Mo2O7 (R = Nd, Tb, Y). Phys Rev B. 1991;43:5682–91. doi:10.1103/PhysRevB.43.5682.

    Article  CAS  Google Scholar 

  57. Raju NP, Gmelin E, Kremer RK. Magnetic-susceptibility and specific-heat studies of spin-glass-like ordering in the pyrochlore compounds R2Mo2O7 (R = Y, Sm, or Gd). Phys Rev B. 1992;46:5405–11. doi:10.1103/PhysRevB.46.5405.

    Article  CAS  Google Scholar 

  58. Gardner JS, Gaulin BD, Lee S-H, Broholm C, Raju NP, Greedan JE. Glassy statics and dynamics in the chemically ordered pyrochlore antiferromagnet Y2Mo2O7. Phys Rev Lett. 1999;83:211–4. doi:10.1103/PhysRevLett.83.211.

    Article  CAS  Google Scholar 

  59. Izotov AD, Gavrichev KS, Lazarev VB, Shebershneva OV. Temperature dependence of heat capacity for substances with multifractal structure. Inorg Mater. 1994;30(4):449–56 (in Russ.).

    CAS  Google Scholar 

  60. Lazarev VB, Izotov AD, Gavrichev KS, Shebershneva OV. Fractal model of heat capacity for substances with diamond-like structures. Thermochim Acta. 1995;269–270:109–16. doi:10.1016/0040-6031(95)02529-4.

    Article  Google Scholar 

Download references

Acknowledgements

The research is supported by the Science Committee of the Ministry of Education and Science, the Republic of Kazakhstan, under Scientific Grant No. 1323/GF4 “Novel materials based on molybdates and tungstates of rare earth elements of the cerium group”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mira R. Bissengaliyeva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 379 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bissengaliyeva, M.R., Taimassova, S.T., Zhakupov, R.M. et al. Thermodynamic properties of pyrochlore-like rare earth triple oxides CaLa2MoO7 and MgLa2MoO7 . J Therm Anal Calorim 128, 491–500 (2017). https://doi.org/10.1007/s10973-016-5865-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5865-0

Keywords

Navigation