Skip to main content
Log in

Molecular conductors as nanoparticles in the presence of long-chain alkyl imidazolium salts or amphiphilic molecules

Synthesis and thermoanalytical studies

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nanoparticles of two molecule-based conductors, namely TTF·TCNQ and TTF[Ni(dmit)2]2, have been prepared in organic solution in the presence of ionic or nonionic species bearing a long-chain alkyl group, acting as growth-controlling agents. The size, morphology, and state of dispersion of the nanoparticles depended on the nature of the growth-controlling agent and the reaction temperature. In the presence of a long-chain alkyl-based ionic liquid at −50 °C, electron micrographs evidence that TTF·TCNQ nano-objects are frequently elongated, whereas TTF[Ni(dmit)2]2 nanoparticles are aggregated. In the presence of a neutral long-chain alkyl-based imine at room temperature, nanoparticles are spherical (mean diameter <20 nm) and well dispersed. Vibration spectra evidence that the amounts of charge transfer for TTF·TCNQ and TTF[Ni(dmit)2]2 as nano-objects are very similar to those for the same phases as bulk materials. According to the thermoanalytical investigations, the prepared nanoparticles are stable thermally up to approximately 200 °C, and their decomposition is generally a multi-step process. Their heat treatment results in various sulfur-containing volatiles (CS2, SO2, H2S); moreover, HCN is also detected in the case of nitrogen-containing molecules (TCNQ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Valade L, Tanaka H. Molecular inorganic conductors and superconductors. In: Bruce DW, O’Hare D, Walton RI, editors. Molecular materials. London: Wiley; 2010. p. 211–80.

    Chapter  Google Scholar 

  2. Fraxedas J. Molecular organic materials—from molecules to crystalline solids. Cambridge: Cambridge University Press; 2006.

    Book  Google Scholar 

  3. Cassoux P, Valade L. Molecular inorganic superconductors. In: Bruce DW, O’Hare D, editors. Inorganic materials. 2nd ed. Chichester: Wiley; 1996.

    Google Scholar 

  4. Savy JP, de Caro D, Faulmann C, Valade L, Almeida M, Koike T, Fujiwara H, Sugimoto T, Fraxedas J, Ondarçuhu T, Pasquier C. Nanowires of molecule-based charge-transfer salts. New J Chem. 2007;31:519–27.

    Article  CAS  Google Scholar 

  5. Lv J, Liu H, Li Y. Self-assembly and properties of low-dimensional nanomaterials based on π-conjugated organic molecules. Pure Appl Chem. 2008;80:639–58.

    Article  CAS  Google Scholar 

  6. Ren L, Xian X, Yan K, Fu L, Liu Y, Chen S, Liu Z. A general electrochemical strategy for synthesizing charge-transfer complex micro/nanowires. Adv Funct Mater. 2010;20:1209–23.

    Article  CAS  Google Scholar 

  7. Jung YJ, Kim Y, Kim GT, Kang W, Noh DY. Electrochemical fabrication of (TMTSF)2X (X = PF6, BF4, ClO4) nanowires. J Nanosci Nanotechnol. 2012;12:5397–401.

    Article  CAS  Google Scholar 

  8. Bhatt A, Mechler Á, Martin LL, Bond AM. Synthesis of Ag and Au nanostructures in an ionic liquid: thermodynamic and kinetic effects underlying nanoparticle, cluster and nanowire formation. J Mater Chem. 2007;17:2241–50.

    Article  CAS  Google Scholar 

  9. de Caro D, Jacob K, Faulmann C, Legros J-P, Senocq F, Fraxedas J, Valade L. Ionic liquid-stabilized nanoparticles of charge transfer-based conductors. Synth Met. 2010;160:1223–7.

    Article  Google Scholar 

  10. de Caro D, Jacob K, Hahioui H, Faulmann C, Valade L, Kadoya T, Mori T, Fraxedas J, Viau L. Nanoparticles of organic conductors: synthesis and application as electrode material in organic field effect transistors. New J Chem. 2011;35:1315–9.

    Article  Google Scholar 

  11. de Caro D, Jacob K, Faulmann C, Valade L, Viau L. TTF[Ni(dmit)2]2: now as nanoparticles. C R Chim. 2012;15:950–4.

    Article  Google Scholar 

  12. de Caro D, Valade L, Faulmann C, Jacob K, Van Dorsselaer D, Chtioui I, Salmon L, Sabbar A, El Hajjaji S, Pérez E, Franceschi S, Fraxedas J. Nanoparticles of molecule-based conductors. New J Chem. 2013;37:3331–6.

    Article  Google Scholar 

  13. Gonfa G, Bustam SA, Man Z, Adbul Mutalib MI. Unique structure and solute-solvent interaction in imidazolium based ionic liquids: a review. Asian Trans Eng. 2011;1(05):24–34.

    Google Scholar 

  14. Philippot K, Chaudret B. Organometallic derived metals, colloids, and nanoparticles. In: Crabtree RH, Mingos MP, editors. Comprehensive organometallic chemistry III—from fundamentals to applications. Amsterdam: Elsevier; 2007. p. 71–99.

    Google Scholar 

  15. de Caro D, Souque M, Faulmann C, Coppel Y, Valade L, Fraxedas J, Vendier O, Courtade F. Colloidal solutions of organic conductive nanoparticles. Langmuir. 2013;29(28):8983–8.

    Article  Google Scholar 

  16. de Caro D, Faulmann C, Valade L, Jacob K, Chtioui I, Foulal S, de Caro P, Bergez-Lacoste M, Fraxedas J, Ballesteros B, Brooks JS, Steven E, Winter LE. Four molecular superconductors isolated as nanoparticles. Eur J Inorg Chem. 2014;24:4010–6.

    Article  Google Scholar 

  17. Wudl F. A new approach to the preparation of tetrathiafulvalenium salts. J Am Chem Soc. 1975;97(7):1962–3.

    Article  CAS  Google Scholar 

  18. Steimecke G, Sieler HJ, Kirmse R, Hoyer E. First synthesis of complexes of C3S5 2−. Phosphorus Sulfur. 1979;7:49–55.

    Article  CAS  Google Scholar 

  19. Bergez-Lacoste M, Thiebaud-Roux S, de Caro P, Fabre J.-F, Mouloungui Z. Dérivés du furfural pour une application biosolvants, Patent FR1351811, France; 2013.

  20. Sun Y, Sheng P, Di C, Jiao F, Xu W, Qiu D, Zhu D. Organic thermoelectric materials and devices based on p- and n-Type poly(metal 1,1,2,2-ethenetetrathiolate)s. Adv Mater. 2012;24:932–7.

    Article  CAS  Google Scholar 

  21. Chappell JS, Bloch AN, Bryden WA, Maxfield M, Poelher PO, Cowan DO. Degree of charge transfer in organic conductors by infrared absorption spectroscopy. J Am Chem Soc. 1981;103(9):2442–3.

    Article  CAS  Google Scholar 

  22. Kuzmany H, Stolz HJ. Raman scattering of TTF-TCNQ and related compounds. J Phys C: Solid State Phys. 1977;10:2241–52.

    Article  CAS  Google Scholar 

  23. De Caro D, Fraxedas J, Faulmann C, Malfant I, Milon J, Lamère JF, Collière V, Valade L. Metallic thin films of TTF[Ni(dmit)2]2 by electrodeposition on (001)-oriented silicon substrates. Adv Mater. 2004;16:835–8.

    Article  Google Scholar 

  24. Savy JP, De Caro D, Valade L, Legros JP, Auban-Senzier P, Pasquier CR, Fraxedas J, Senocq F. Superconductivity in TTF[Ni(dmit)2]2 films. EPL. 2007;78:37005/1–5.

    Article  CAS  Google Scholar 

  25. Liu G, Fang Q, Xu W, Chen H, Wang C. Vibration assignment of carbon–sulfur bond in 2-thione-1,3-dithiole-4,5-dithiolate derivatives. Spectrochim Acta A. 2004;60:541–50.

    Article  Google Scholar 

  26. Pokhodnya KI, Faulmann C, Malfant I, Andreu-Solano R, Cassoux P, Mlayah A, Smirnov D, Léotin J. Infrared and Raman properties of [M(dmit)2] (M = Ni, Pd) based compounds. Synth Met. 1999;103:2016–9.

    Article  CAS  Google Scholar 

  27. Bozio R, Zanon I, Girlando A, Pecile C. Vibrational spectroscopy of molecular constituents of one-dimensional organic conductors. Tetrathiofulvalene (TTF), TTF+, and (TTF+)2 dimer. J Chem Phys. 1979;71:2282–93.

    Article  CAS  Google Scholar 

  28. Siedle AR. Metal complexes of tetrathiafulvalene and related compounds. In: Miller JS, editor. Extended linear chain compounds, vol. 2. New York: Plenum Press; 1982. p. 469–87.

    Chapter  Google Scholar 

  29. Muraoka Y, Imajo S, Yamashita S, Akutsu H, Nakazawa Y. Thermal anomaly around the superconductive transition of κ-(BEDT-TTF)2Cu(NCS)2 with external pressure and magnetic field control. J Therm Anal Calorim. 2016;123:1891–7.

    Article  CAS  Google Scholar 

  30. Ishikawa T, Yamashita S, Nakazawa Y, Kawamoto A, Oguni M. Calorimetric study of molecular superconductor κ-(BEDT-TTF)2Ag(CN)2H2O which contains water in the anion layers. J Therm Anal Calorim. 2008;92:435–8.

    Article  CAS  Google Scholar 

  31. Bhattacharjee A, Roy D, Roy M. Thermal degradation of a molecular magnetic material: {N(n-C4H9)4[FeIIFeIII(C2O4)3]}. J Therm Anal Calorim. 2012;109:1423–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CNRST-Morocco for a grant (S. F.) and Ministère de l’Enseignement Supérieur et de la Recherche-France for a grant (I. C.). We would also like to thank CNRS-Toulouse and Université Paul Sabatier-Toulouse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souad El Hajjaji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foulal, S., El Hajjaji, S., Trif, L. et al. Molecular conductors as nanoparticles in the presence of long-chain alkyl imidazolium salts or amphiphilic molecules. J Therm Anal Calorim 127, 1879–1888 (2017). https://doi.org/10.1007/s10973-016-5858-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5858-z

Keywords

Navigation