Skip to main content
Log in

Effect of preparation methods on the structure and catalytic thermal decomposition application of graphene/Fe2O3 nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The graphene/Fe2O3 nanocomposites were prepared by the sol–gel method and then dried naturally in air or supercritical CO2. X-ray diffraction, scanning electron microscopy and specific surface area analysis were used to characterize the structure of the nanocomposites. The nanocomposites dried with supercritical CO2 have larger specific area and porous structure. The catalytic properties of the graphene/Fe2O3 nanocomposites for ammonium perchlorate were investigated by differential scanning calorimetry. When the nanocomposites were added, not only the thermal decomposition temperature of ammonium perchlorate was decreased, but also the exothermic heat was increased. Comparing the two drying methods, the graphene/Fe2O3 nanocomposites dried with supercritical CO2 showed better catalytic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6(3):183–91.

    Article  CAS  Google Scholar 

  2. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A. Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed. 2009;48(42):7752–77.

    Article  CAS  Google Scholar 

  3. Zhao J, Liu Z, Qin Y, Hu W. Fabrication of Co3O4/graphene oxide composites using supercritical fluid and their catalytic application for the decomposition of ammonium perchlorate. CrystEngComm. 2014;16(10):2001–8.

    Article  CAS  Google Scholar 

  4. Jeong H-K, Lee YP, Lahaye RJWE, Park M-H, An KH, Kim IJ, et al. Evidence of graphitic AB stacking order of graphite oxides. J Am Chem Soc. 2008;130(4):1362–6.

    Article  CAS  Google Scholar 

  5. Zhu J, Zeng G, Nie F, Xu X, Chen S, Han Q, et al. Decorating graphene oxide with CuO nanoparticles in a water-isopropanol system. Nanoscale. 2010;2(6):988–94.

    Article  CAS  Google Scholar 

  6. Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80(6):1339.

    Article  CAS  Google Scholar 

  7. Kim H, Abdala AA, Macosko CW. Graphene/polymer nanocomposites. Macromolecules. 2010;43(16):6515–30.

    Article  CAS  Google Scholar 

  8. Yan D-X, Pang H, Li B, Vajtai R, Xu L, Ren P-G, et al. Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv Funct Mater. 2015;25(4):559–66.

    Article  CAS  Google Scholar 

  9. Sun T, Zhang Z, Xiao J, Chen C, Xiao F, Wang S, et al. Facile and green synthesis of palladium nanoparticles-graphene-carbon nanotube material with high catalytic activity. Sci Rep. 2013;3(8):2527.

    Google Scholar 

  10. Zhou W, Sun F, Pan K, Tian G, Jiang B, Ren Z, et al. Well-ordered large-pore mesoporous anatase TiO2 with remarkably high thermal stability and improved crystallinity: preparation, characterization, and photocatalytic performance. Adv Funct Mater. 2011;21(10):1922–30.

    Article  CAS  Google Scholar 

  11. Dey A, Athar J, Varma P, Prasant H, Sikder AK, Chattopadhyay S. Graphene-iron oxide nanocomposite (GINC): an efficient catalyst for ammonium perchlorate (AP) decomposition and burn rate enhancer for AP based composite propellant. RSC Adv. 2015;5(3):1950–60.

    Article  CAS  Google Scholar 

  12. Yu X, Zhang M, Yuan W, Shi G. A high-performance three-dimensional Ni–Fe layered double hydroxide/graphene electrode for water oxidation. J Mater Chem A. 2015;3(13):6921–8.

    Article  CAS  Google Scholar 

  13. Zhang Q, Liu Y, Duan Y, Fu N, Liu Q, Fang Y, et al. Mn3O4/graphene composite as counter electrode in dye-sensitized solar cells. RSC Adv. 2014;4(29):15091–7.

    Article  CAS  Google Scholar 

  14. Wang Q, Jiao L, Du H, Wang Y, Yuan H. Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors. J Power Sour. 2014;245:101–6.

    Article  CAS  Google Scholar 

  15. Zheng Y, Cheng Y, Wang Y, Bao F, Zhou L, Wei X, et al. Quasicubic α-Fe2O3 nanoparticles with excellent catalytic performance. J Phys Chem B. 2006;110(7):3093–7.

    Article  CAS  Google Scholar 

  16. Wang GH, Li WC, Jia KM, Spliethoff B, Schüth F, Lu AH. Shape and size controlled α-Fe2O3 nanoparticles as supports for gold-catalysts: synthesis and influence of support shape and size on catalytic performance. Appl Catal A Gen. 2009;364(1–2):42–7.

    Article  CAS  Google Scholar 

  17. Cao S-W, Fang J, Shahjamali MM, Wang Z, Yin Z, Yang Y, et al. In situ growth of Au nanoparticles on Fe2O3 nanocrystals for catalytic applications. CrystEngComm. 2012;14(21):7229–35.

    Article  CAS  Google Scholar 

  18. Su J, Cao M, Ren L, Hu C. Fe3O4-graphene nanocomposites with improved lithium storage and magnetism properties. J Phys Chem C. 2011;115(30):14469–77.

    Article  CAS  Google Scholar 

  19. Nurzulaikha R, Lim HN, Harrison I, Lim SS, Pandikumar A, Huang NM, et al. Graphene/SnO2 nanocomposite-modified electrode for electrochemical detection of dopamine. Sens Bio-Sens Res. 2015;5:42–9.

    Article  Google Scholar 

  20. Kumar N, Srivastava AK, Patel HS, Gupta BK, Varma GD. Facile synthesis of ZnO-reduced graphene oxide nanocomposites for NO2 gas sensing applications. Eur J Inorg Chem. 2015;2015(11):1912–23.

    Article  CAS  Google Scholar 

  21. Brunner G. Supercritical fluids: technology and application to food processing. J Food Eng. 2005;67(1–2):21–33.

    Article  Google Scholar 

  22. Santos P, Aguiar AC, Barbero GF, Rezende CA, Martínez J. Supercritical carbon dioxide extraction of capsaicinoids from malagueta pepper (Capsicum frutescens L.) assisted by ultrasound. Ultrason Sonochem. 2015;22:78–88.

    Article  CAS  Google Scholar 

  23. Tang Q, Wang T. Preparation of silica aerogel from rice hull ash by supercritical carbon dioxide drying. J Supercrit Fluid. 2005;35(1):91–4.

    Article  CAS  Google Scholar 

  24. Liu B, Wong-Foy AG, Matzger AJ. Rapid and enhanced activation of microporous coordination polymers by flowing supercritical CO2. Chem Commun. 2013;49(14):1419–21.

    Article  CAS  Google Scholar 

  25. Sui R, Charpentier P. Synthesis of metal oxide nanostructures by direct sol–gel chemistry in supercritical fluids. Chem Rev. 2012;112(6):3057–82.

    Article  CAS  Google Scholar 

  26. Wang XB, Li JQ, Luo YJ. Effect of drying methods on the structure and thermal decomposition behavior of ammonium perchlorate/graphene composites. Acta Phys Chim Sin. 2013;29(10):2079–86.

    CAS  Google Scholar 

  27. Dey A, Nangare V, More PV, Shafeeuulla Khan MA, Khanna PK, Sikder AK, et al. A graphene titanium dioxide nanocomposite (GTNC): one pot green synthesis and its application in a solid rocket propellant. RSC Adv. 2015;5(78):63777–85.

    Article  CAS  Google Scholar 

  28. Shusser M, C. Culick FE, Cohen NS. Combustion response of ammonium perchlorate. AIAA J. 2002;40(4):722–30.

    Article  CAS  Google Scholar 

  29. Cui P, Wang A. Synthesis of CNTs/CuO and its catalytic performance on the thermal decomposition of ammonium perchlorate. J Saudi Chem Soc. 2014;30(3):343–8.

    Google Scholar 

  30. Wang Y, Zhu J, Yang X, Lu L, Wang X. Preparation of NiO nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate. Thermochim Acta. 2005;437(1–2):106–9.

    Article  CAS  Google Scholar 

  31. Song L, Zhang S, Chen B, Ge J, Jia X. A hydrothermal method for preparation ofα-Fe2O3 nanotubes and their catalytic performance for thermal decomposition of ammonium perchlorate. Colloids Surf A. 2010;360(1–3):1–5.

    Article  CAS  Google Scholar 

  32. Lan YF, Li XY, Li GP, Luo YJ. Sol–gel method to prepare graphene/Fe2O3 aerogel and its catalytic application for the thermal decomposition of ammonium perchlorate. J Nanopart Res. 2015;17:1–9.

    Article  CAS  Google Scholar 

  33. Zheng X, Li P, Zheng S, Zhang Y. Thermal decomposition of ammonium perchlorate in the presence of Cu(OH)2 2Cr(OH)3 nanoparticles. Powder Technol. 2014;268:446–51.

    Article  CAS  Google Scholar 

  34. Zhang W, Luo Q, Duan X, Zhou Y, Pei C. Nitrated graphene oxide and its catalytic activity in thermal decomposition of ammonium perchlorate. Mater Res Bull. 2014;50:73–8.

    Article  CAS  Google Scholar 

  35. Hosseini SG, Toloti SGH, Babaei K, Ghavi A. The effect of average particle size of nano-Co3O4 on the catalytic thermal decomposition of ammonium perchlorate particles. J Therm Anal Calorim. 2016;124(3):1243–54.

    Article  CAS  Google Scholar 

  36. Li N, Cao M, Wu Q, Hu C. A facile one-step method to produce Ni/graphene nanocomposites and their application to the thermal decomposition of ammonium perchlorate. CrystEngComm. 2012;14(2):428–34.

    Article  CAS  Google Scholar 

  37. Li N, Geng Z, Cao M, Ren L, Zhao X, Liu B, et al. Well-dispersed ultrafine Mn3O4 nanoparticles on graphene as a promising catalyst for the thermal decomposition of ammonium perchlorate. Carbon. 2013;54:124–32.

    Article  CAS  Google Scholar 

  38. Yuan Y, Jiang W, Wang Y, Shen P, Li F, Li P, et al. Hydrothermal preparation of Fe2O3/graphene nanocomposite and its enhanced catalytic activity on the thermal decomposition of ammonium perchlorate. Appl Surf Sci. 2014;303:354–9.

    Article  CAS  Google Scholar 

  39. Lan YF, Jin MM, Luo YJ. Preparation and characterization of graphene aerogel/Fe2O3/ammonium perchlorate nanostructured energetic composite. J Sol–Gel Sci Technol. 2015;74:161–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjun Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, Y., Deng, J., Li, G. et al. Effect of preparation methods on the structure and catalytic thermal decomposition application of graphene/Fe2O3 nanocomposites. J Therm Anal Calorim 127, 2173–2179 (2017). https://doi.org/10.1007/s10973-016-5838-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5838-3

Keywords

Navigation