Skip to main content
Log in

Preparation, geometric structure, molecular docking thermal and spectroscopic characterization of novel Schiff base ligand and its metal chelates

Screening their anticancer and antimicrobial activities

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The condensation of o-benzoyl benzoic acid and 4-aminoantipyrine resulted in the formation of novel Schiff base ligand (HL) with the IUPAC name 2-(((1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)imino)(phenyl)methyl)benzoic acid. The synthesized Schiff base ligand and its complexes with M(II)/(III) transition elements (Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II)) were characterized by elemental, magnetic susceptibility, molar conductivity, spectroscopic (1H NMR, mass, UV–visible, FTIR, ESR), thermal and X-ray powder diffraction. The data showed that the complexes had composition of the MHL type. The diffused reflectance spectra, magnetic susceptibility and ESR spectral data of the complexes confirm an octahedral geometry around metal ions. The thermal analysis data revealed the decomposition of the complexes in three to five successive decomposition steps within the temperature range of 30–1000°C, and the activation thermodynamic parameters were reported. The molecular structures of the Schiff base ligand and its Mn(II) and Zn(II) metal complexes are optimized theoretically, and the quantum chemical parameters are calculated. In order to predict the binding between o-benzoyl benzoic acid, 4-aminoantipyrine and HL ligand with the Escherichia coli bacterial RNA (4p20) receptor, molecular docking was carried out. The in vitro antimicrobial screening of the newly synthesized compounds was tested against different bacterial and fungal organisms. The results showed that the metal complexes have biologically activity more than the new Schiff base ligand against the tested organisms. The Schiff base ligand and its complexes were also screened for their anticancer activity against breast cancer cell line (MCF7). The Mn(II), Cr(III) and Cd(II) complexes were found to have low IC50 values which support the possibility of using them as cytotoxic agents and hence might become good anticancer agent in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mishra N, Poonia K, Kumar D. An overview of biological aspects of Schiff base metal complexes. Int J Adv Res Technol. 2013;2(8):52–66.

    Google Scholar 

  2. Khan RA, Yadav S, Hussain Z, Arjmanda F, Tabassum S. Carbohydrate linked organotin(IV) complexes as human topoisomerase Iα inhibitor and their antiproliferative effects against the human carcinoma cell line. Dalton Trans. 2014;43:2534–48.

    Article  CAS  Google Scholar 

  3. Srivastava AK, Agarwal RK, Kapur V, Sharma S, Srivastava M, Jain PC. Complexes of hydrazine and substituted hydrazines with some oxocations. Trans Met Chem. 1982;7:41–4.

    Article  CAS  Google Scholar 

  4. El-Bahnasawy RM, El-Meleigy SE, El-Tawansi A. o-Hydroxyaroyl-isonicotinoyl hydrazones as chelating agents with divalent transition metal ions. Trans Met Chem. 1994;19:270–4.

    Article  CAS  Google Scholar 

  5. Abid KK, Omar AB. Synthesis and spectroscopic studies of dinuclear Schiff base and its transition metal complexes with Cr(III), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) ions. Res Chem Intermed. 2015;41(3):1715–26.

    Article  CAS  Google Scholar 

  6. Pages BJ, Ang DL, Wright EP, Aldrich-Wright JR. Metal complex interactions with DNA. Dalton Trans. 2015;44:3505–26.

    Article  CAS  Google Scholar 

  7. Dimmock JR, Puthucode RN, Smith JM, Hetherington M, Quail JW, Pugazhenthi U, Lechler J, Stables JP. (Aryloxy)aryl semicarbazones and related compounds: a novel class of anticonvulsant agents possessing high activity in the maximal electroshock screen. J Med Chem. 1996;39:3984–97.

    Article  CAS  Google Scholar 

  8. Dutta S, Basuli F, Peng S, Lee G, Bhattacharya S. Synthesis, structure and redox properties of some thiosemicarbazone complexes of rhodium. New J Chem. 2002;26:1607–12.

    Article  CAS  Google Scholar 

  9. Basuli F, Peng S, Bhattacharya S. Chemical control on the coordination mode of benzaldehyde semicarbazone ligands. Synthesis, structure, and redox properties of ruthenium complexes. Inorg Chem. 2001;40:1126–33.

    Article  CAS  Google Scholar 

  10. Pal I, Basuli F, Thomas CW. Synthesis, structure and properties of a novel heterooctametallic complex containing a cyclic Ru4Ni4 core. Chem Int Ed. 2001;40:2923–5.

    Article  CAS  Google Scholar 

  11. Basuli F, Peng S, Bhattacharya S. Unusual coordination mode of thiosemicarbazone ligands. A search for the origin. Inorg Chem. 2000;39:1120–7.

    Article  CAS  Google Scholar 

  12. Abram U, McCleverty JA, Meyer TJ. Comprehensive coordination chemistry. 2nd ed. New York: Elsevier; 2004.

    Google Scholar 

  13. Benoist E, Gestin JF, Blanchard P, Jubault M, Quintard JP. Spectroscopic and electrochemical studies of new copper(II) and nickel(II) N2S2 tetradentate complexes of potential interest to nuclear medicine. Trans Met Chem. 1999;24:42–8.

    Article  CAS  Google Scholar 

  14. Tong LH, Wong YL, Pascu SI, Dilworth JR. Synthesis, structures and catalytic properties of iron(III) complexes with asymmetric N-capped tripodal NO3 ligands and a pentadentate N2O3 ligand. Dalton Trans. 2008;21(35):4784–91.

    Article  Google Scholar 

  15. Leeb M. Antibiotics: a shot in the arm. Nature. 2004;431:892–3.

    Article  CAS  Google Scholar 

  16. Singh NP, Srivastava AN. Physico-chemical and biological studies of Cu(II), Co(II) and Ni(II) complexes of an N4 coordinating ligand derived from the Schiff base of diacetyl with ethylenediamine and benzoic acid. J Serb Chem Soc. 2012;77(5):627–37.

    Article  CAS  Google Scholar 

  17. Singh NP, Srivastava AN. Synthesis, characterization and antimicrobial studies of novel binuclear transition metal complexes of Schiff base derived from 1-amino-5-methyl-2,6-pyrimidine-dione and 2,3-butanedione. Asian J Chem. 2013;25:533–7.

    CAS  Google Scholar 

  18. Srivastava AN, Singh NP, Shriwastaw CK. Synthesis and characterization of bioactive binuclear transition metal complexes of a Schiff base ligand derived from 4-amino-1H-pyrimidin-2-one, diacetyl and glycine. J Serb Chem Soc. 2014;79:421–33.

    Article  CAS  Google Scholar 

  19. Yousif E, Rentschler E, Salih N, Salimon J, Hameed A, Katan M. Synthesis and antimicrobial screening of tetra Schiff bases of 1,2,4,5-tetra (5-amino-1,3,4-thiadiazole-2-yl)benzene. J Saudi Chem Soc. 2014;18:269–75.

    Article  Google Scholar 

  20. Brodowska K, Łodyga-Chruścińska E. Schiff bases—interesting range of applications in various fields of science. CHEMIK. 2014;68(2):129–34.

    CAS  Google Scholar 

  21. Tanaka K, Shimoura R, Caira MR. Synthesis, crystal structures and photochromic properties of novel chiral Schiff base macrocycles. Tetrahedron Lett. 2010;51(2):449–52.

    Article  CAS  Google Scholar 

  22. Anupama B, Sunita M, Leela DS, Ushaiah B, Kumari CG. Synthesis, spectral characterization, dna binding studies and antimicrobial activity of Co(II), Ni(II), Zn(II), Fe(III) and VO(IV) complexes with 4-aminoantipyrine Schiff base of ortho-vanillin. J Fluoresc. 2014;24(4):1067–76.

    Article  CAS  Google Scholar 

  23. Radhakrishnan PK. Complexes of lanthanide perchlorates with 4-N-(2′-hydroxy-1′-naphthylidene)aminoantipyrine. Polyhedron. 1986;5:995–8.

    Article  CAS  Google Scholar 

  24. Maurya RC, Mishra DD, Pandey M, Shukla P, Rathour R. Synthesis and spectral studies of octacoordinated dioxouranium(VI) complexes with some schiff bases derived from 4-acetyl-2,3-dimethyl-l-(4-methylphenyl)-3-pyrazoline-5-one and aromatic amines. Synth React Inorg Met-Org Chem. 1993;23(1):161–74.

    Article  CAS  Google Scholar 

  25. Soliman MH, Mohamed GG, Mohamed AE. Metal complexes of fenoterol drug. Preparation, spectroscopic, thermal and biological activity characterization. J Therm Anal Calorim. 2010;99:639–47.

    Article  CAS  Google Scholar 

  26. Mohamed GG, Abd El-Wahab ZH. Mixed ligand complexes of bis(phenylimine) Schiff base ligands incorporating pyridinium moiety: synthesis, characterization and antibacterial activity. Spectrochim Acta A. 2005;61:1059–68.

    Article  Google Scholar 

  27. Molecular Operating Environment (MOE 2008.10) Chemical Computing Group Inc., Montreal, QC, Canada. http://www.chemcomp.com/MOE-Molecular_Operating_Environment.htm.

  28. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98:5648–52.

    Article  CAS  Google Scholar 

  29. Johnson BG, Frisch MJ. Analytic second derivatives of the gradient-corrected density functional energy. Effect of quadrature weight derivatives. Chem Phys Lett. 1993;216:133–40.

    Article  CAS  Google Scholar 

  30. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37:785–9.

    Article  CAS  Google Scholar 

  31. McLean AD, Chandler GS. Contracted Gaussian-basis sets for molecular calculations. 1. 2nd row atoms, Z = 11–18. J Chem Phys. 1980;72:5639–48.

    Article  CAS  Google Scholar 

  32. Dunning TH Jr, Hay PJ. In: Schaefer III HF, editor. Modern theoretical chemistry, vol 3. New York: Plenum; 1977. p. 1–28.

    Google Scholar 

  33. Hay PJ, Wadt WR. Ab initio effective core potentials for molecular calculations—potentials for K to Au including the outermost core orbitals. J Chem Phys. 1985;82:299–310.

    Article  CAS  Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Wallingford: Gaussian, Inc.; 2010.

  35. Keith T, Millam J, editors. GaussView, Version 5, R. KS: Dennington, Semichem Inc., Shawnee Mission; 2009.

    Google Scholar 

  36. National Committee for Vlinical Laboratory Standards. Method for antifungal disc diffusion susceptibility testing of yeast: proposed guideline M44-P, Wayne, PA, USA; 2003.

  37. Skehan P, Storeng R. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst. 1990;82:1107–12.

    Article  CAS  Google Scholar 

  38. Zayed EM, Mohamed GG, Hindy AMM. Transition metal complexes of novel Schiff base. Synthesis, spectroscopic characterization, and in vitro antimicrobial activity of complexes. J Therm Anal Calorim. 2015;120:893–903.

    Article  CAS  Google Scholar 

  39. Ilhan S. Synthesis and spectral studies of new macrocyclic Schiff base Cu(II), Ni(II), Cd(II), Zn(II), Pb(II), and La(III) complexes containing pyridine head unit. Russ J Coord Chem. 2009;35(5):347–51.

    Article  CAS  Google Scholar 

  40. Refat MS, Mohamed GG, de Farias RF, Powell AK, El-Garib MS, El-Korashy SA, Hussien MA. Spectroscopic, thermal and kinetic studies of coordination compounds of Zn(II), Cd(II) and Hg(II) with norfloxacin. J Therm Anal Calorim. 2010;102:225–32.

    Article  CAS  Google Scholar 

  41. Zayed EM, Ismail EH, Mohamed GG, Khalil MMH, Kamel AB. Synthesis, spectroscopic and structural characterization, and antimicrobial studies of metal complexes of a new hexadentate Schiff base ligand. Spectrophotometric determination of Fe(III) in water samples using a recovery test. Monatsh für Chem. 2014;145(5):755–65.

    Article  CAS  Google Scholar 

  42. Raman N, Raja JD, Sakthivel A. Synthesis, spectral characterization of Schiff base transition metal complexes: DNA cleavage and antimicrobial activity studies. J Chem Sci. 2007;119(4):303–10.

    Article  CAS  Google Scholar 

  43. Abdallah SM, Mohamed GG, Zayed MA, Abou El-Ela MS. Spectroscopic study of molecular structures of novel Schiff base derived from o-phthaldehyde and 2-aminophenol and its coordination compounds together with their biological activity. Spectrochim Acta A. 2009;73:833–40.

    Article  Google Scholar 

  44. Mahalakshmi N, Rajavel R. Synthesis, spectroscopic, DNA cleavage and antibacterial activity of binuclear schiff base complexes. Arab J Chem. 2014;7:509–17.

    Article  CAS  Google Scholar 

  45. Emara AAA, Saleh AA, Adly OMI. Spectroscopic investigations of new binuclear transition metal complexes of Schiff bases derived from 4,6-diacetylresorcinol and 3-amino-1-propanol or 1,3-diamino-propane. Spectrochim Acta A. 2007;68:592–604.

    Article  Google Scholar 

  46. Lever ABP. Inorganic electronic spectroscopy. 2nd ed. New York: Elsevier; 1997.

    Google Scholar 

  47. Cotton FA, Wilkinson G, Murillo CA, Bochmann M. Advanced inorganic chemistry. 6th ed. New York: Wiley; 1999.

    Google Scholar 

  48. Prashanthi Y, Kiranmai K, Subhashini NJP, Shivaraj S. Synthesis, potentiometric and antimicrobial studies on metal complexes of isoxazole Schiff bases. Spectrochim Acta A. 2008;70:30–5.

    Article  CAS  Google Scholar 

  49. Tyagi P, Chandra S, Saraswat BS, Yadav D. Design, spectral characterization, thermal, DFT studies and anticancer cell line activities of Co(II), Ni(II) and Cu(II) complexes of Schiff bases derived from 4-amino-5-(pyridin-4-yl)-4H-1,2,4-triazole-3-thiol. Spectrochim Acta A. 2015;145:155–64.

    Article  CAS  Google Scholar 

  50. Hathaway BJ, Billing DE. The electronic properties and stereochemistry of mono-nuclear complexes of the copper(II) ion. Coord Chem Rev. 1970;5:143–207.

    Article  CAS  Google Scholar 

  51. Hathaway BJ. A new look at the stereochemistry and electronic properties of complexes of the copper(II) ion. Struct Bond. 1984;57:55–118.

    Article  CAS  Google Scholar 

  52. Gudasi KB, Patil SA, Vadavi RS, Shenoy RV. Crystal structure of 2-[2-hydroxy-3-methoxyphenyl]-3-[2-hydroxy-3-methoxybenzylamino]-1,2-dihydroquinazolin-4(3H)-one and the synthesis, spectral and thermal investigation of its transition metal complexes. Trans Met Chem. 2006;31:586–92.

    Article  CAS  Google Scholar 

  53. El-Sonbati AZ, Diab MA, El-Bindary AA, Mohamed GG, Morgan ShM. Thermal, spectroscopic studies and hydrogen bonding in supramolecular assembly of azo rhodanine complexes. Inorg Chim Acta. 2015;430:96–107.

    Article  CAS  Google Scholar 

  54. Nagesh GY, Mruthyunjayaswamy BHM. Synthesis, characterization and biological relevance of some metal (II) complexes with oxygen, nitrogen and oxygen (ONO) donor Schiff base ligand derived from thiazole and 2-hydroxy-1-naphthaldehyde. J Mol Struct. 2015;1085:198–206.

    Article  CAS  Google Scholar 

  55. El-Ghamaz NA, El-Sonbati AZ, Diab MA, El-Bindary AA, Mohamed GG, Morgan ShM. Correlation between ionic radii of metal azodye complexes and electrical conductivity. Spectrochim Acta A. 2015;147:200–11.

    Article  CAS  Google Scholar 

  56. Velumania S, Mathew X, Sebastian PJ, Narayandass SaK, Mangalaraj D. Structural and optical properties of hot wall deposited CdSe thin films. Sol Energy Mater Sol Cells. 2003;76:347–58.

    Article  Google Scholar 

  57. Basavaraja S, Balaji DS, Bedre MD, Raghunandan D, Swamy PMP, Venkatarman A. Solvothermal synthesis and characterization of acicular α-Fe2O3 nanoparticles. Bull Mater Sci. 2011;34(7):1313–7.

    Article  CAS  Google Scholar 

  58. El-Sonbati AZ, Mohamed GG, El-Bindary AA, Hassan WMI, Elkholy AK. Geometrical structure, molecular docking, potentiometric and thermodynamic studies of 3-aminophenol azodye and its metal complexes. J Mol Liq. 2015;209:625–34.

    Article  CAS  Google Scholar 

  59. Keypour H, Shooshtari A, Rezaeivala M, Kup FO, Rudbari HA. Synthesis of two new N2O4 macroacyclic Schiff base ligands and their mononuclear complexes: spectral, X-ray crystal structural, antibacterial and DNA cleavage activity. Polyhedron. 2015;97:75–82.

    Article  CAS  Google Scholar 

  60. Tweedy BG. Plant extracts with metal ions as potential antimicrobial agents. Phytopathology. 1964;55:910–4.

    Google Scholar 

  61. Jadon SCS, Gupta N, Singh RV. Synthetic and biochemical-studies of some hydrazine carbodithioic acid-derivatives of dioxomolybdenum(VI). Ind J Chem A. 1995;34(9):733–6.

    Google Scholar 

  62. Pelczar MJ, Chan ECS, Krieg NR. Microbiology. 5th ed. New York: McGraw-Hill; 1998.

    Google Scholar 

  63. Alaghaz AMA, Zayed ME, Alharbi SA, Ammar RAA. Synthesis, spectroscopic identification, thermal, potentiometric and antibacterial activity studies of 4-amino-5-mercapto-S-triazole Schiff’s base complexes. J Mol Struct. 2015;1087:60–7.

    Article  CAS  Google Scholar 

  64. Gupta N, Swaroop R, Singh RV. Spectroscopic characterization of biologically potent hydrazinecarboxamides and their organoboron (III) complexes. Main Group Met Chem. 1997;20(6):387.

    Google Scholar 

  65. Raman N, Mitu L, Sakthivel A, Pandi MSS. Studies on DNA cleavage and antimicrobial screening of transition metal complexes of 4-aminoantipyrine derivatives of N2O2 type. J Iran Chem Soc. 2009;6(4):738–48.

    Article  CAS  Google Scholar 

  66. Kondo J, François B, Russell RJ, Murray JB, Westhof E. Crystal structure of the bacterial ribosomal decoding site complexed with amikacin containing the γ-amino-α-hydroxybutyryl (haba) group. Biochimie. 2006;88:1027–31.

    Article  CAS  Google Scholar 

  67. Lee SM, Sim KSh, Lo KM. Synthesis, characterization and biological studies of diorganotin(iv) complexes with tris[(hydroxymethyl)aminomethane] schiff bases. Inorg Chim Acta. 2015;429:195–208.

    Article  CAS  Google Scholar 

  68. Kavitha P, RamaChary M, Singavarapu BVVA, LaxmaReddy K. Synthesis, characterization, biological activity and DNA cleavage studies of tridentate Schiff bases and their Co(II) complexes. J Saudi Chem Soc. 2016;20(1):69–80.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their deep thanks to Prof. Dr. Maher M.I. El-Dessouky for revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gehad G. Mohamed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4380 kb)

Supplementary material 2 (DOC 490 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, W.H., Deghadi, R.G. & Mohamed, G.G. Preparation, geometric structure, molecular docking thermal and spectroscopic characterization of novel Schiff base ligand and its metal chelates. J Therm Anal Calorim 127, 2149–2171 (2017). https://doi.org/10.1007/s10973-016-5826-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5826-7

Keywords

Navigation