Journal of Thermal Analysis and Calorimetry

, Volume 128, Issue 1, pp 29–37 | Cite as

Growth, optical, thermal, dielectric and mechanical studies of sodium hydrogen succinate single crystal

A third-order NLO material
  • P. S. Latha Mageshwari
  • R. Priya
  • S. Krishnan
  • V. Joseph
  • S. Jerome Das


Sodium hydrogen succinate, an alkali metallo-organic third-order nonlinear optical crystal, had been grown successfully using aqueous solution by slow evaporation technique at room temperature. Transparent single crystals were selected and subjected to single-crystal X-ray diffraction analysis to identify lattice parameters, space group and morphology. The grown crystal was further subjected to powder X-ray diffraction to analyze the crystalline quality, UV–Vis–NIR spectral analysis to reveal optical transparency, FTIR spectroscopy for confirmation of the functional group analysis and TG–DTG/DSC analysis to determine the thermal stability. The dielectric constant and dielectric loss were studied as a function of frequency at different temperatures, and the results were discussed. The mechanical properties were calculated by Vickers microhardness test, and the third-order nonlinear optical parameters such as nonlinear refractive index, nonlinear absorption coefficient and real and imaginary parts of the third-order nonlinear optical susceptibility were determined by Z-scan technique.


Crystal growth Thermal studies Third harmonic generation Z-scan technique 


  1. 1.
    Tsunesada F, Iwai T, Watanabe T, Adachi H, Yoshimura M, Mori Y, Sasaki T. High-quality crystal growth of organic nonlinear optical crystal DAST. J Cryst Growth. 2002;237:2104–6.CrossRefGoogle Scholar
  2. 2.
    Imran A, Hassan QMA, Badran HA. Third-order nonlinear optical response and optical limiting behavior of 3, 4-Diaminopyridine. Eur Sci J. 2014;10:382–90.Google Scholar
  3. 3.
    Kannan V, Thirupugalmani K, Shanmugam G, Brahadeeswaran S. Synthesis, growth, thermal, optical, mechanical and dielectric studies of N-succinopyridine. J Ther Anal Calorim. 2014;115:731–42.CrossRefGoogle Scholar
  4. 4.
    Bass M, Enoch JM, Van Stryland EW, Wolfe WL. Handbooks of optics IV: fiber optics and nonlinear optics. 2nd ed. NewYork: McGraw-Hill; 2001.Google Scholar
  5. 5.
    Williams DJ. Ed. ACS Symposium Series No; 1983: pp. 233.Google Scholar
  6. 6.
    Kannan V, Rakhikrishna R, Philip J, Brahadeeswaran S. Studies on thermophysical and mechanical properties of hydrazonium L-tartrate. J Ther Anal Calorim. 2014;116:339–47.CrossRefGoogle Scholar
  7. 7.
    Guo YL, Kao CK, Li EH, Chiang KS. Nonlinear photonics. Berlin: Springer; 2002.Google Scholar
  8. 8.
    Aravinth K, AnandhaBabu G, Ramasamy P. Characterization of 4-choloro-3-nitrobenzophenone crystal grown by Bridgman technique. J Ther Anal Calorim. 2014;117:1165–9.CrossRefGoogle Scholar
  9. 9.
    Prasad AA, Muthu K, Meenatchi V, Rajasekar M, Meenakshisundaram SP, Mojundar SC. Growth and characterization studies of 2-amino-5-nitrobenzophenonium picrate crystals. J Ther Anal Calorim. 2015;119:885–90.CrossRefGoogle Scholar
  10. 10.
    Madhurambal G, Ramasamy P, Anbusrinivasan P, Kavitha S, Vasudevan G, Mojundar SC. Growth and characterization studies of 2-Bromo 4’-Choloroacetophenone (BCAP) crystals. J Ther Anal Calorim. 2008;94:59–62.CrossRefGoogle Scholar
  11. 11.
    Kamath L, Manjunatha KB, Shettigar S, Umesh G, Narayana B, Samshuddin S, Sarojini BK. Investigation of third-order nonlinear and optical power limiting properties of terphenyl derivatives. Opt Laser Technol. 2014;56:425–9.CrossRefGoogle Scholar
  12. 12.
    Kumar PCR, Ravindrachary V, Janardhana K, Manjunath HR, Karegouda P, Crasta V, Sridhar MA. Optical and structural properties of chalcone NLO single crystals. J Mol Struct. 2011;1005:1–7.CrossRefGoogle Scholar
  13. 13.
    Kalsbeek N. Structures of partially deutratedsodium hydrogen succinate at 295 and 120 K and rubidium hydrogen succinate at 120 K. Acta Cryst. 1992;C48:1389–94.Google Scholar
  14. 14.
    Kaminsky W. WinXMorph: a computer program to draw crystal morphology, growth sectors and cross sections with export files in VRML V2.0 utf8-virtual reality format. J Appl Cryst. 2005;38:566–7.CrossRefGoogle Scholar
  15. 15.
    Kaminsky W. From CIF to virtual morphology using the WinXMorph program. J Appl Cryst. 2007;40:382–5.CrossRefGoogle Scholar
  16. 16.
    Ravindra NM, Bharadwaj RP. Sunil Kumar K, Srivastava VK. Model based studies of some optical and electronic properties of narrow and wide gap materials. Infrared Phys. 1981;21:369–81.CrossRefGoogle Scholar
  17. 17.
    Ravindra NM, Srivastava VK. Electronic polarizability as a function of the penn gap in semiconductors. Infrared Phys. 1979;20:67–9.CrossRefGoogle Scholar
  18. 18.
    Mageshwari PSL, Priya R, Krishnan S, Joseph V, Das SJ. Growth, optical, thermal, mechanical and dielectric studies of sodium succinate hexahydrate (β phase) single crystal: a promising third order NLO material. Opt Laser Technol. 2016;85:66–74.CrossRefGoogle Scholar
  19. 19.
    Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous germanium. Phys Status Solidi. 1966;15:627–37.CrossRefGoogle Scholar
  20. 20.
    Ashour A, El-Kadry N, Mahmoud SA. On the electrical and optical properties of CdS films thermally deposited by a modified source. Thin solid Films. 1995;269:117–20.CrossRefGoogle Scholar
  21. 21.
    Dinakaran Paul M, Kalainathan S. Synthesis crystal growth, structural, spectral, thermal, mechanical linear and nonlinear optical studies of organic single crystal 4-Iodo 4-nitrostilbene (IONS). Spectrochimica Acta Part A: Mol Biomol Spectrosc. 2013;111:123–30.CrossRefGoogle Scholar
  22. 22.
    Krishnan S, Raj CJ, Robert R, Ramanand A, Das SJ. Growth and characterization of succinic acid single crystals. Cryst. Res. Technol. 2007;42:1087–90.CrossRefGoogle Scholar
  23. 23.
    Krishnan S, Raj CJ, Das SJ. Growth and characterization of novel ferroelectric urea-succinic acid single crystals. J Cryst Growth. 2008;310:3313–7.CrossRefGoogle Scholar
  24. 24.
    Mageshwari PSL, Priya R, Krishnan S, Joseph V, Das SJ. Optical, dielectric and ferroelectric behavior on doped lithium sulphate crystals. Optik. 2014;125:2289–94.CrossRefGoogle Scholar
  25. 25.
    Mott BW. Microindentation Hardness Testing. London: Butterworths; 1956. p. 9–21.Google Scholar
  26. 26.
    Sangwal K, Surowska B, Blaziak P. Relationship between indentation size effect and material properties in microhardness measurement of some cobalt-based alloys. Mater Chem Phys. 2003;80:428–37.CrossRefGoogle Scholar
  27. 27.
    Tabor D. The hardness of metals. Oxford: UK Carendon Press; 1951. p. 49–116.Google Scholar
  28. 28.
    Onitsch EM. Uber die Mikroharte der Metalle. Mikroskopie. 1947;2:131.Google Scholar
  29. 29.
    Jaffar AF. Solvent Effect on the Third Order nonlinearity of Oxazine Dye Doped PMMA films by using Z-scan Techniques. Int J Adv Res Technol. 2013;2:56–64.Google Scholar
  30. 30.
    Sheik-Bahae M, Said AA, Wei T-H, Hagan DJ, Van Stryland EW. Sensitive measurement of optical nonlinearities using a single beam. IEEE J Quantum Electron. 1990;26:760–9.CrossRefGoogle Scholar
  31. 31.
    Shettigar S, Umesh G, Chandrasekaran K, Kalluraya B. Third order nonlinear optical properties and two photon absorption in newly synthesized phenyl sydnone doped polymer. Synth Met. 2007;157:142–6.CrossRefGoogle Scholar
  32. 32.
    Arunkumar A, Ramaswamy P, Vishnu K, Jayaraj MK. Growth, structural, thermal, optical and electrical properties of potassium succinate-succinic acid crystal. J Mater Sci. 2014;49:3598–607.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • P. S. Latha Mageshwari
    • 1
  • R. Priya
    • 2
  • S. Krishnan
    • 3
  • V. Joseph
    • 4
  • S. Jerome Das
    • 4
  1. 1.Department of PhysicsR. M. K. Engineering CollegeKavaraipettaiIndia
  2. 2.Department of PhysicsR. M. D. Engineering CollegeKavaraipettaiIndia
  3. 3.Department of PhysicsB. S.Abdur Rahman UniversityChennaiIndia
  4. 4.Department of PhysicsLoyola CollegeChennaiIndia

Personalised recommendations