Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 127, Issue 3, pp 2301–2306 | Cite as

Thermal analysis and kinetic decomposition of Nitro-functionalized hydroxyl-terminated polybutadiene bonded explosive

  • Hadi Abusaidi
  • Hamid Reza GhaieniEmail author
Article

Abstract

This paper describes thermochemical properties and decomposition characteristics of HMX-based Nitro-HTPB bonded explosive. The thermal stability of three polymer-bonded explosive (PBX) samples containing Nitro-HTPB with various amounts of nitro groups was determined by simultaneous thermogravimetric analysis and differential scanning calorimetry (TG/DSC). The results indicate that nitro content of Nitro-HTPB could affect on thermal stability and its decomposition temperature of PBX samples. Also, Nitro-HTPB bonded explosive decomposes exothermally in a single step. The influence of heating rate on the DSC behavior of the PBX composite material was investigated, while thermal decomposition of this compound followed the first-order law. The critical explosion temperature and kinetic parameters such as activation energy and frequency factor for this explosive compound were obtained from the DSC data by non-isothermal methods proposed by ASTM E698 and Ozawa.

Keywords

PBX Nitro-HTPB Thermal decomposition Non-isothermal Kinetic parameters 

References

  1. 1.
    Muthiah R, Krishnamurthy V, Gupta B. Rheology of HTPB propellant. I. Effect of solid loading, oxidizer particle size, and aluminum content. J Appl Polym Sci. 1992;44(11):2043–52.CrossRefGoogle Scholar
  2. 2.
    Nair U, Asthana S, Rao AS, Gandhe B. Advances in high energy materials (review paper). Defence Sci J. 2010;60(2):137–51.CrossRefGoogle Scholar
  3. 3.
    Provatas A. Energetic polymers and plasticisers for explosive formulations-A review of recent advances: DTIC Document. 2000. Report no 202.Google Scholar
  4. 4.
    Kim HS. Improvement of mechanical properties of plastic bonded explosive using neutral polymeric bonding agent. Propel Expl Pyrotech. 1999;24(2):96–8.CrossRefGoogle Scholar
  5. 5.
    Badgujar D, Talawar M, Asthana S, Mahulikar P. Advances in science and technology of modern energetic materials: an overview. J Hazard Mater. 2008;151(2):289–305.CrossRefGoogle Scholar
  6. 6.
    Gopala Krishnan PS, Ayyaswamy K, Nayak S. Hydroxy terminated polybutadiene: chemical modifications and applications. J Macromol Sci Part A. 2013;50(1):128–38.CrossRefGoogle Scholar
  7. 7.
    DeLuca L, Galfetti L, Maggi F, Colombo G, Merotto L, Boiocchi M, et al. Characterization of HTPB-based solid fuel formulations: performance, mechanical properties, and pollution. Acta Astronaut. 2013;92(2):150–62.CrossRefGoogle Scholar
  8. 8.
    Colclough ME, Desai H, Millar RW, Paul NC, Stewart MJ, Golding P. Energetic polymers as binders in composite propellants and explosives. Polym Advan Technol. 1994;5(9):554–60.CrossRefGoogle Scholar
  9. 9.
    Schermann W, Wegner G, Williams JO, Thomas JM. The role of dislocations in the solid-state polymerization of monomers having conjugated triple bonds: a study of 2, 4-hexadiyne-1, 6-diol bis (p-toluene sulfonate). J Polym Sci Polym Phys Ed. 1975;13(4):753–63.CrossRefGoogle Scholar
  10. 10.
    Gaur B, Lochab B, Choudhary V, Varma I. Azido polymers—energetic binders for solid rocket propellants. J Macromol Sci Part C. 2003;43(4):505–45.CrossRefGoogle Scholar
  11. 11.
    Shankar RM, Roy TK, Jana T. Terminal functionalized hydroxyl-terminated polybutadiene: AN energetic binder for propellant. J Appl Polym Sci. 2009;114(2):732–41.CrossRefGoogle Scholar
  12. 12.
    Shekhar Pant C, Santosh MS, Banerjee S, Khanna PK. Single Step synthesis of nitro-functionalized hydroxyl-terminated polybutadiene. Propellants, Explos, Pyrotech. 2013;38(6):748–53.CrossRefGoogle Scholar
  13. 13.
    Kumari D, Balakshe R, Banerjee S, Singh H. Energetic plasticizers for gun & rocket propellants. Rev J Chem. 2012;2(3):240–62.CrossRefGoogle Scholar
  14. 14.
    Abusaidi H, Ghaieni HR, Pourmortazavi SM, Motamed-Shariati SH. Effect of nitro content on thermal stability and decomposition kinetics of Nitro-HTPB. J Therm Anal Calorim. 2016;124(2):935–41.CrossRefGoogle Scholar
  15. 15.
    Pourmortazavi SM, Farhadi K, Mirzajani V, Mirzajani S, Kohsari I. Study on the catalytic effect of diaminoglyoxime on thermal behaviors, non-isothermal reaction kinetics and burning rate of homogeneous double-base propellant. J Therm Anal Calorim. 2016;125(1):121–8.CrossRefGoogle Scholar
  16. 16.
    Fu X-L, Fan X-Z, Wang B-Z, Huo H, Li J-Z, Hu R-Z. Thermal behavior, decomposition mechanism and thermal safety of 5, 7-diamino-4, 6-dinitrobenzenfuroxan (CL-14). J Therm Anal Calorim. 2016;124(2):993–1001.CrossRefGoogle Scholar
  17. 17.
    ASTM E 698-05. Standard test method for Arrhenius kinetic constants for thermally unstable materials. 2005.Google Scholar
  18. 18.
    Sunitha M, Reghunadhan Nair C, Krishnan K, Ninan K. Kinetics of Alder-ene reaction of Tris (2-allylphenoxy) triphenoxycyclotriphosphazene and bismaleimides—a DSC study. Thermochim Acta. 2001;374(2):159–69.CrossRefGoogle Scholar
  19. 19.
    Yi J-h, Zhao F-q, Xu S-y, Zhang L-y, Gao H-x, Hu R-z. Effects of pressure and TEGDN content on decomposition reaction mechanism and kinetics of DB gun propellant containing the mixed ester of TEGDN and NG. J Hazard Mater. 2009;165(1):853–9.CrossRefGoogle Scholar
  20. 20.
    Tonglai Z, Rongzu H, Yi X, Fuping L. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC. Thermochim Acta. 1994;244:171–6.CrossRefGoogle Scholar
  21. 21.
    Salla J, Morancho J, Cadenato A, Ramis X. Non-isothermal degradation of a thermoset powder coating in inert and oxidant atmospheres. J Therm Anal Calorim. 2003;72(2):719–28.CrossRefGoogle Scholar
  22. 22.
    Ma H, Yan B, Li Z, Guan Y, Song J, Xu K, et al. Preparation, non-isothermal decomposition kinetics, heat capacity and adiabatic time-to-explosion of NTO·DNAZ. J Hazard Mater. 2009;169(1):1068–73.CrossRefGoogle Scholar
  23. 23.
    Pourmortazavi S, Hosseini S, Rahimi-Nasrabadi M, Hajimirsadeghi S, Momenian H. Effect of nitrate content on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;162(2):1141–4.CrossRefGoogle Scholar
  24. 24.
    Tompa AS, Boswell RF. Thermal stability of a plastic bonded explosive. Thermochim Acta. 2000;357:169–75.CrossRefGoogle Scholar
  25. 25.
    Pickard JM. Critical ignition temperature. Thermochim Acta. 2002;392:37–40.CrossRefGoogle Scholar
  26. 26.
    Trache D, Khimeche K, Mezroua A, Benziane M. Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability. J Therm Anal Calorim. 2016;124(3):1485–96.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical Engineering, Faculty of ChemistryMalek-Ashtar University of Technology (MUT)TehranIran

Personalised recommendations