Synthesis and thermal decomposition performance of 3,6,7-triamino-7H-s-triazolo[5,1-c]-s-triazole

Abstract

3,6,7-Triamino-7H-s-triazolo[5,1-c]-s-triazole was synthesized from triaminoguanidine hydrochloride and cyanogen bromide, and has been prepared at the 30-g scale. A single crystal of 3,6,7-triamino-7H-s-triazolo[5,1-c]-s-triazole was cultivated, and its crystalline density at 293 K was 1.726 g cm−3. Its heat of formation (ΔH f,solid = 470.5 kJ mol−1) was computed by using the density functional theory (DFT) method, and its detonation pressure and detonation velocity were further predicted by EXPLO5 code (D = 9483 m s−1, P = 30.4 GPa). The intermolecular interaction of the title compound was investigated by Hirshfeld surface analysis. Moreover, its thermodynamic performance was evaluated by non-isothermal kinetic methods based on the results of the differential scanning calorimeter (DSC), which shows that the apparent activation energy (E a) obtained by Kissinger, Ozawa and Starink methods is 223.55, 221.61 and 223.73 kJ mol−1, respectively. Meanwhile, the transformation of molecular structure was analyzed by the rapid scanning Fourier transform infrared spectroscopy (RSFT-IR) under the temperature range from 50 to 300 °C. The reaction pathway was further supported by quantum chemical calculations. 3,6,7-Triamino-7H-s-triazolo[5,1-c]-s-triazole processes good vacuum thermal stability, high detonation performance and low sensitivity. It is convincible that these physical–chemical properties make 3,6,7-triamino-7H-s-triazolo[5,1-c]-s-triazole a promising candidate worthy of further investigation.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Scheme 2

References

  1. 1.

    Gao H, Shreeve JM. Azole-based energetic salts. Chem Rev. 2011;111:7377–436.

    CAS  Article  Google Scholar 

  2. 2.

    Chavez DE, Hiskey MA, Gilardi RD. 3,3′-Azobis(6-amino-1,2,4,5-tetrazine): a novel high-nitrogen energetic material. Angew Chem. 2000;39:1791–3.

    CAS  Article  Google Scholar 

  3. 3.

    Churakov AM, Ioffe SL, Tartakovsky VA. Synthesis of [1,2,5]oxadiazole[3,4-e][1,2,3,4] tetrazine 4,6-di-N-oxide. Mende Comm. 1995;5:227–8.

    Article  Google Scholar 

  4. 4.

    Nedelko VV, Zakharov VV, Korsunskii BL, Larikova TS, Chukanov NV, Kiselev MS, Kalmykov PI. Thermal decomposition of [1,2,5]oxadiazolo[3,4-e][1,2,3,4]-tetrazine-4,6-di-N-oxide. Russ J Phys Chem B. 2013;7:113–7.

    CAS  Article  Google Scholar 

  5. 5.

    Bian C, Dong X, Zhang X, Zhou Z, Zhang M, Li C. The unique synthesis and energetic properties of a novel fused heterocycle: 7-nitro-4-oxo-4,8-dihydro-[1,2,4]triazolo[5,1-d][1,2,3,5]tetrazine 2-oxide and its energetic salts. J Mater Chem A. 2015;3:3594–601.

    CAS  Article  Google Scholar 

  6. 6.

    Thottempudi V, Forohor F, Parrish DA, Shreeve JM. Tri(triazolo)benzene and its derivatives: high-density energetic materials. Angew Chem. 2012;51:9881–5.

    CAS  Article  Google Scholar 

  7. 7.

    Thottempudi V, Yin P, Zhang J, Parrish DA, Shreeve JM. 1,2,3-Triazolo[4,5,-e]furazano[3,4,-b] pyrazine 6-oxide—a fused heterocycle with a roving hydrogen forms a new class of insensitive energetic materials. Chem Eur J. 2014;20:542–8.

    CAS  Article  Google Scholar 

  8. 8.

    Potts KT, Hirsch C. 1,2,4-Triazoles. XIII. The synthesis of 5H-s-triazolo[5,1-c]-s-triazole and its derivatives. J Org Chem. 1968;33:143–50.

    CAS  Article  Google Scholar 

  9. 9.

    Yin P, Zhang J, Parrish DA, Shreeve JM. Energetic fused triazoles—a promising C–N fused heterocyclic cation. J Mater Chem A. 2015;3:8606–12.

    CAS  Article  Google Scholar 

  10. 10.

    Sheldrick GM. A short history of SHELX. Acta Crystallogr. 2008;A64:112–22.

    Article  Google Scholar 

  11. 11.

    Spackman MA, Jayatilaka D. Hirshfeld surface analysis. Cryst Eng Comm. 2009;11:19–32.

    CAS  Article  Google Scholar 

  12. 12.

    Spackman MA, McKinnon JJ. Fingerprinting intermolecular interactions in molecular crystals. Cryst Eng Comm. 2002;4:378–92.

    CAS  Article  Google Scholar 

  13. 13.

    Wei X, Ma Y, Long X, Zhang C. A strategy developed from the observed energetic-energetic cocrystals of BTF: cocrystallizing and stabilizing energetic hydrogen-free molecules with hydrogenous energetic coformer molecules. Cryst Eng Comm. 2015;17:7150–9.

    CAS  Article  Google Scholar 

  14. 14.

    Wei X, Zhang A, Ma Y, Xue X, Zhou J, Zhu Y, Zhang C. Toward low-sensitive and high-energetic cocrystal III: thermodynamics of energetic-energetic cocrystal formation. Cryst Eng Comm. 2015;17:9037–47.

    CAS  Article  Google Scholar 

  15. 15.

    Ma Y, Zhang A, Zhang C, Jiang D, Zhu Y, Zhang C. Crystal packing of low-sensitivity and high-energy explosives. Cryst Growth Des. 2014;14:4703–13.

    CAS  Article  Google Scholar 

  16. 16.

    Ma Y, Zhang A, Xue X, Jiang D, Zhu Y, Zhang C. Crystal packing of impact-sensitive high-energy explosives. Cryst Growth Des. 2014;14:6101–14.

    CAS  Article  Google Scholar 

  17. 17.

    Yang J. Theoretical studies on the structures, densities, detonation properties and thermal stability of tris(triazolo)benzene and its derivatives. Polycycl Aromat Compd. 2015;35:387–400.

    CAS  Article  Google Scholar 

  18. 18.

    Keshavarz MH, Esmailpour K, Zamani M, Roknabadi AG. Thermochemical, sensitivity and detonation characteristics of new thermally stable high performance explosives. Propellants Explos Pyrotech. 2015;40:886–91.

    CAS  Article  Google Scholar 

  19. 19.

    Ma Q, Jiang T, Zhang X, Fan G, Wang J, Huang J. Theoretical investigations on 4,4′,5,5′-tetranitro-2,2′-1H,1′H-2,2′-biimidazole derivatives as potential nitrogen-rich high energy materials. J Phys Org Chem. 2015;28:31–9.

    CAS  Article  Google Scholar 

  20. 20.

    Zohari N, Keshavarz MH, Seyedsadjadi SA. A link between impact sensitivity of energetic compounds and their activation energies of thermal decomposition. J Therm Anal Calorim. 2014;117:423–32.

    CAS  Article  Google Scholar 

  21. 21.

    Liu Y, Jiang YT, Zhang TL, Feng CG, Yang L. Thermal kinetic performance and storage life analysis of a series of high-energy and green energetic materials. J Therm Anal Calorim. 2015;119:659–70.

    CAS  Article  Google Scholar 

  22. 22.

    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    CAS  Article  Google Scholar 

  23. 23.

    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1957;38:1881–6.

    Article  Google Scholar 

  24. 24.

    Boswell PG. Calculation of activation energies using a modified Kissinger method. J Therm Anal Calorim. 1980;18:353–6.

    CAS  Article  Google Scholar 

  25. 25.

    Zhang T, Hu R, Xie Y, Li F. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC. Thermochim Acta. 1994;244:171–6.

    CAS  Article  Google Scholar 

  26. 26.

    Pourmortazavi SM, Nasrabadi MR, Kohsari I, Hajimirsadeghi SS. Non-isothermal kinetic studies on thermal decomposition of energetic materials KNF and NTO. J Therm Anal Calorim. 2012;110:857–63.

    CAS  Article  Google Scholar 

  27. 27.

    Winget P, Clark T. Enthalpies of formation from B3LYP calculations. J Comput Chem. 2004;25:725–33.

    CAS  Article  Google Scholar 

  28. 28.

    Politzer P, Murray JS, Grice ME, Desalvo M, Miller M. Calculation of heats of sublimation and solid phase heats of formation. Mol Phys. 1997;91:923–8.

    CAS  Article  Google Scholar 

  29. 29.

    Jing S, Liu Y, Liu D, Guo J. Synthesis and theoretical studies of a new high explosive, N,N,-bis(3-aminofurazan-4-yl)-4,4′-diamino-2,2′,3,3′,5,5′,6,6′-octanitroazobenzene. Cent Eur J Energ Mater. 2015;12:745–55.

    Google Scholar 

  30. 30.

    Wu Q, Zhu W, Xiao H. Computer-aided design of two novel and super high energy cage explosives: dodecanitrohexaprismane and hexanitrohexaazaprismane. RSC Adv. 2014;4:3789–97.

    CAS  Article  Google Scholar 

  31. 31.

    Wu Q, Zhu W, Xiao H. Designing and screening novel explosives with high energy and low sensitivity by appropriately introducing N-oxides, amino groups, and nitro groups into s-heptazine. RSC Adv. 2014;4:53000–9.

    CAS  Article  Google Scholar 

  32. 32.

    Sućeska M. Evaluation of detonation energy from EXPLO5 computer code results. Propellants Explos Pyrotech. 1999;24:280–5.

    Article  Google Scholar 

  33. 33.

    Klapötke TM, Schmid PC, Schnell S, Stierstorfer J. Thermal stabilization of energetic materials by the aromatic nitrogen-rich 4,4′,5,5′-tetraamino-3,3′-bi-1,2,4-triazolium cation. J Mater Chem A. 2015;3:2658–68.

    Article  Google Scholar 

  34. 34.

    Fischer N, Fischer D, Klapötke TM, Piercey DG, Stierstorfer J. Pushing the limits of energetic materials—the synthesis and characterization of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate. J Mater Chem. 2012;22:20418–22.

    CAS  Article  Google Scholar 

  35. 35.

    Zhang J, Shreeve JM. 3,3′-Dinitroamino-4,4′-azoxyfurazan and its derivatives: an assembly of diverse N–O building blocks for high-performance energetic materials. J Am Chem Soc. 2014;136:4437–45.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Nos. 11402237 and 11302200), the Science and Technology Development Funds of CAEP (No. 2015B0302055), and the NSAF Foundation of National Natural Science Foundation of China and China Academy of Engineering Physics (No. U1530262). The first author also thanks Lin Wang for her great assistance in RSFT-IR characterization.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Guijuan Fan or Jinglun Huang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Lu, H., Liao, L. et al. Synthesis and thermal decomposition performance of 3,6,7-triamino-7H-s-triazolo[5,1-c]-s-triazole. J Therm Anal Calorim 127, 2517–2529 (2017). https://doi.org/10.1007/s10973-016-5781-3

Download citation

Keywords

  • Synthesis
  • Energetic material
  • Multi-nitrogen compounds
  • X-ray diffraction
  • Non-isothermal kinetic