Journal of Thermal Analysis and Calorimetry

, Volume 127, Issue 3, pp 2517–2529 | Cite as

Synthesis and thermal decomposition performance of 3,6,7-triamino-7H-s-triazolo[5,1-c]-s-triazole

  • Qing Ma
  • Huanchang Lu
  • Longyu Liao
  • Ya Chen
  • Bibo Cheng
  • Guijuan FanEmail author
  • Jinglun HuangEmail author


3,6,7-Triamino-7H-s-triazolo[5,1-c]-s-triazole was synthesized from triaminoguanidine hydrochloride and cyanogen bromide, and has been prepared at the 30-g scale. A single crystal of 3,6,7-triamino-7H-s-triazolo[5,1-c]-s-triazole was cultivated, and its crystalline density at 293 K was 1.726 g cm−3. Its heat of formation (ΔH f,solid = 470.5 kJ mol−1) was computed by using the density functional theory (DFT) method, and its detonation pressure and detonation velocity were further predicted by EXPLO5 code (D = 9483 m s−1, P = 30.4 GPa). The intermolecular interaction of the title compound was investigated by Hirshfeld surface analysis. Moreover, its thermodynamic performance was evaluated by non-isothermal kinetic methods based on the results of the differential scanning calorimeter (DSC), which shows that the apparent activation energy (E a) obtained by Kissinger, Ozawa and Starink methods is 223.55, 221.61 and 223.73 kJ mol−1, respectively. Meanwhile, the transformation of molecular structure was analyzed by the rapid scanning Fourier transform infrared spectroscopy (RSFT-IR) under the temperature range from 50 to 300 °C. The reaction pathway was further supported by quantum chemical calculations. 3,6,7-Triamino-7H-s-triazolo[5,1-c]-s-triazole processes good vacuum thermal stability, high detonation performance and low sensitivity. It is convincible that these physical–chemical properties make 3,6,7-triamino-7H-s-triazolo[5,1-c]-s-triazole a promising candidate worthy of further investigation.


Synthesis Energetic material Multi-nitrogen compounds X-ray diffraction Non-isothermal kinetic 



This work was financially supported by National Natural Science Foundation of China (Nos. 11402237 and 11302200), the Science and Technology Development Funds of CAEP (No. 2015B0302055), and the NSAF Foundation of National Natural Science Foundation of China and China Academy of Engineering Physics (No. U1530262). The first author also thanks Lin Wang for her great assistance in RSFT-IR characterization.


  1. 1.
    Gao H, Shreeve JM. Azole-based energetic salts. Chem Rev. 2011;111:7377–436.CrossRefGoogle Scholar
  2. 2.
    Chavez DE, Hiskey MA, Gilardi RD. 3,3′-Azobis(6-amino-1,2,4,5-tetrazine): a novel high-nitrogen energetic material. Angew Chem. 2000;39:1791–3.CrossRefGoogle Scholar
  3. 3.
    Churakov AM, Ioffe SL, Tartakovsky VA. Synthesis of [1,2,5]oxadiazole[3,4-e][1,2,3,4] tetrazine 4,6-di-N-oxide. Mende Comm. 1995;5:227–8.CrossRefGoogle Scholar
  4. 4.
    Nedelko VV, Zakharov VV, Korsunskii BL, Larikova TS, Chukanov NV, Kiselev MS, Kalmykov PI. Thermal decomposition of [1,2,5]oxadiazolo[3,4-e][1,2,3,4]-tetrazine-4,6-di-N-oxide. Russ J Phys Chem B. 2013;7:113–7.CrossRefGoogle Scholar
  5. 5.
    Bian C, Dong X, Zhang X, Zhou Z, Zhang M, Li C. The unique synthesis and energetic properties of a novel fused heterocycle: 7-nitro-4-oxo-4,8-dihydro-[1,2,4]triazolo[5,1-d][1,2,3,5]tetrazine 2-oxide and its energetic salts. J Mater Chem A. 2015;3:3594–601.CrossRefGoogle Scholar
  6. 6.
    Thottempudi V, Forohor F, Parrish DA, Shreeve JM. Tri(triazolo)benzene and its derivatives: high-density energetic materials. Angew Chem. 2012;51:9881–5.CrossRefGoogle Scholar
  7. 7.
    Thottempudi V, Yin P, Zhang J, Parrish DA, Shreeve JM. 1,2,3-Triazolo[4,5,-e]furazano[3,4,-b] pyrazine 6-oxide—a fused heterocycle with a roving hydrogen forms a new class of insensitive energetic materials. Chem Eur J. 2014;20:542–8.CrossRefGoogle Scholar
  8. 8.
    Potts KT, Hirsch C. 1,2,4-Triazoles. XIII. The synthesis of 5H-s-triazolo[5,1-c]-s-triazole and its derivatives. J Org Chem. 1968;33:143–50.CrossRefGoogle Scholar
  9. 9.
    Yin P, Zhang J, Parrish DA, Shreeve JM. Energetic fused triazoles—a promising C–N fused heterocyclic cation. J Mater Chem A. 2015;3:8606–12.CrossRefGoogle Scholar
  10. 10.
    Sheldrick GM. A short history of SHELX. Acta Crystallogr. 2008;A64:112–22.CrossRefGoogle Scholar
  11. 11.
    Spackman MA, Jayatilaka D. Hirshfeld surface analysis. Cryst Eng Comm. 2009;11:19–32.CrossRefGoogle Scholar
  12. 12.
    Spackman MA, McKinnon JJ. Fingerprinting intermolecular interactions in molecular crystals. Cryst Eng Comm. 2002;4:378–92.CrossRefGoogle Scholar
  13. 13.
    Wei X, Ma Y, Long X, Zhang C. A strategy developed from the observed energetic-energetic cocrystals of BTF: cocrystallizing and stabilizing energetic hydrogen-free molecules with hydrogenous energetic coformer molecules. Cryst Eng Comm. 2015;17:7150–9.CrossRefGoogle Scholar
  14. 14.
    Wei X, Zhang A, Ma Y, Xue X, Zhou J, Zhu Y, Zhang C. Toward low-sensitive and high-energetic cocrystal III: thermodynamics of energetic-energetic cocrystal formation. Cryst Eng Comm. 2015;17:9037–47.CrossRefGoogle Scholar
  15. 15.
    Ma Y, Zhang A, Zhang C, Jiang D, Zhu Y, Zhang C. Crystal packing of low-sensitivity and high-energy explosives. Cryst Growth Des. 2014;14:4703–13.CrossRefGoogle Scholar
  16. 16.
    Ma Y, Zhang A, Xue X, Jiang D, Zhu Y, Zhang C. Crystal packing of impact-sensitive high-energy explosives. Cryst Growth Des. 2014;14:6101–14.CrossRefGoogle Scholar
  17. 17.
    Yang J. Theoretical studies on the structures, densities, detonation properties and thermal stability of tris(triazolo)benzene and its derivatives. Polycycl Aromat Compd. 2015;35:387–400.CrossRefGoogle Scholar
  18. 18.
    Keshavarz MH, Esmailpour K, Zamani M, Roknabadi AG. Thermochemical, sensitivity and detonation characteristics of new thermally stable high performance explosives. Propellants Explos Pyrotech. 2015;40:886–91.CrossRefGoogle Scholar
  19. 19.
    Ma Q, Jiang T, Zhang X, Fan G, Wang J, Huang J. Theoretical investigations on 4,4′,5,5′-tetranitro-2,2′-1H,1′H-2,2′-biimidazole derivatives as potential nitrogen-rich high energy materials. J Phys Org Chem. 2015;28:31–9.CrossRefGoogle Scholar
  20. 20.
    Zohari N, Keshavarz MH, Seyedsadjadi SA. A link between impact sensitivity of energetic compounds and their activation energies of thermal decomposition. J Therm Anal Calorim. 2014;117:423–32.CrossRefGoogle Scholar
  21. 21.
    Liu Y, Jiang YT, Zhang TL, Feng CG, Yang L. Thermal kinetic performance and storage life analysis of a series of high-energy and green energetic materials. J Therm Anal Calorim. 2015;119:659–70.CrossRefGoogle Scholar
  22. 22.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  23. 23.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1957;38:1881–6.CrossRefGoogle Scholar
  24. 24.
    Boswell PG. Calculation of activation energies using a modified Kissinger method. J Therm Anal Calorim. 1980;18:353–6.CrossRefGoogle Scholar
  25. 25.
    Zhang T, Hu R, Xie Y, Li F. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC. Thermochim Acta. 1994;244:171–6.CrossRefGoogle Scholar
  26. 26.
    Pourmortazavi SM, Nasrabadi MR, Kohsari I, Hajimirsadeghi SS. Non-isothermal kinetic studies on thermal decomposition of energetic materials KNF and NTO. J Therm Anal Calorim. 2012;110:857–63.CrossRefGoogle Scholar
  27. 27.
    Winget P, Clark T. Enthalpies of formation from B3LYP calculations. J Comput Chem. 2004;25:725–33.CrossRefGoogle Scholar
  28. 28.
    Politzer P, Murray JS, Grice ME, Desalvo M, Miller M. Calculation of heats of sublimation and solid phase heats of formation. Mol Phys. 1997;91:923–8.CrossRefGoogle Scholar
  29. 29.
    Jing S, Liu Y, Liu D, Guo J. Synthesis and theoretical studies of a new high explosive, N,N,-bis(3-aminofurazan-4-yl)-4,4′-diamino-2,2′,3,3′,5,5′,6,6′-octanitroazobenzene. Cent Eur J Energ Mater. 2015;12:745–55.Google Scholar
  30. 30.
    Wu Q, Zhu W, Xiao H. Computer-aided design of two novel and super high energy cage explosives: dodecanitrohexaprismane and hexanitrohexaazaprismane. RSC Adv. 2014;4:3789–97.CrossRefGoogle Scholar
  31. 31.
    Wu Q, Zhu W, Xiao H. Designing and screening novel explosives with high energy and low sensitivity by appropriately introducing N-oxides, amino groups, and nitro groups into s-heptazine. RSC Adv. 2014;4:53000–9.CrossRefGoogle Scholar
  32. 32.
    Sućeska M. Evaluation of detonation energy from EXPLO5 computer code results. Propellants Explos Pyrotech. 1999;24:280–5.CrossRefGoogle Scholar
  33. 33.
    Klapötke TM, Schmid PC, Schnell S, Stierstorfer J. Thermal stabilization of energetic materials by the aromatic nitrogen-rich 4,4′,5,5′-tetraamino-3,3′-bi-1,2,4-triazolium cation. J Mater Chem A. 2015;3:2658–68.CrossRefGoogle Scholar
  34. 34.
    Fischer N, Fischer D, Klapötke TM, Piercey DG, Stierstorfer J. Pushing the limits of energetic materials—the synthesis and characterization of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate. J Mater Chem. 2012;22:20418–22.CrossRefGoogle Scholar
  35. 35.
    Zhang J, Shreeve JM. 3,3′-Dinitroamino-4,4′-azoxyfurazan and its derivatives: an assembly of diverse N–O building blocks for high-performance energetic materials. J Am Chem Soc. 2014;136:4437–45.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Laboratory of Energetic Materials, Institute of Chemical MaterialsChina Academy of Engineering PhysicsMianyangChina

Personalised recommendations