Skip to main content
Log in

Thermal characterization and theoretical and experimental comparison of picryl chloride derivatives of heterocyclic energetic compounds

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

There were 10 nitrogen-rich energetic compounds prepared by the reaction of 2,4,6-trinitrochlorobenzen (picryl chloride) with pyrazole, 1,2,4-triazole, imidazole, 3-aminopyrazole, 3-nitropyrazole, 3-amino-1,2,4-triazole, 3-nitro-1,2,4-triazole, 3,5-diamino-1,2,4-triazole and guanidine. These compounds were characterized with IR spectra, elemental analysis and 1H NMR and 13C NMR methods. They were also examined with thermogravimetry and differential thermal analyses. The heat generated after the explosion was measured by the use of differential scanning calorimetry. The formation enthalpies of some of the products synthesized were determined by the use of Gaussian 09 software, and probable products were estimated from the data reported in the literature. Finally, theoretical explosion energies of these compounds were calculated using the theoretical formation enthalpies and compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Klapötke TM. Chemsitry of high-energy materials. Berlin: Walter de Gruyter; 2012. p. 141–64.

    Book  Google Scholar 

  2. Agrawal JP, Hodgson RD. Organic chemistry of explosives. Chichester: Wiley; 2007. p. 158–9.

    Google Scholar 

  3. Talawar MB, Sivabalan R, Mukundan T, Muthurajam H, Sikder AK, Gandhe BR, Rao AS. Environmantally compatible next generation green energetic materials. J Hazard Mater. 2009;161:589–607.

    Article  CAS  Google Scholar 

  4. Badgujar DM, Talawar MB, Asthana SN, Mahulikar PP. Advances in science and technology of modern energetic materials: an overview. J Hazard Mater. 2008;151:289–305.

    Article  CAS  Google Scholar 

  5. Politzer P, Murray JS. Energetic Materials Part 1. Decomposition, crystal and molecular properties. Elsevier: 2003. pp 411–416.

  6. Shaw RW, Bril TB, Thompson DL. Overview of recent research on energetic materials. Singapore: World Scientific; 2005. p. 474–85.

    Book  Google Scholar 

  7. Klapötke TM. Chemsitry of high-energy materials. Berlin: Walter de Gruyter; 2012. p. 141–2.

    Book  Google Scholar 

  8. Agrawal JP, Surve RN, Sonawane SH. Some aromatic nitrate esters: synthesis, structural aspects, thermal and explosive properties. J Hazard Mater. 2000;77:11–31.

    Article  CAS  Google Scholar 

  9. Agrawal JP, Hodgson RD. Organic chemistry of explosives. Chichester: Wiley; 2007. p. 158–62.

    Google Scholar 

  10. Badgujar DM, Talawar MB, Harlapur SF, Asthana SN, Mahulikar PP. Synthesis, characterization and evaluation of 1,2-bis(2,4,6-trinitrophenyl)hydrazine. J Hazard Mater. 2009;172:276–9.

    Article  CAS  Google Scholar 

  11. Zeng Z, Guo Y, Twamley B, Shreeve JM. Energetic polyazole polynitrobenzenes and their coordination complexes. Chem Commun. 2009;6014–6. doi:10.1039/b915090k.

  12. Agrawal JP. Past, present and future of thermally stable explosives. Cent Eur J Energ Mater. 2013;9:273–90.

    Google Scholar 

  13. Agrawal JP, Hodgson RD. Organic chemistry of explosives. Chichester: Wiley; 2007. p. 166.

    Google Scholar 

  14. Loule JA, Mills K. Heterocyclic Chemistry. 5th ed. New York: Wiley; 2010. p. 557.

    Google Scholar 

  15. Jameson DL, Goldsby KA. 2,6-Bis(pyrazolyl)pyridines. J Org Chem. 1990;55:4992–4.

    Article  CAS  Google Scholar 

  16. Lee J, Block-Bolton A. Correlation of physical and chemical properties of c-h-n-o explosives (part II). Propellants, Explos, Pyrotech. 1993;18:161–7.

    Article  CAS  Google Scholar 

  17. Agrawal JP. High energy materials. Weinheim: Wiley; 2010. p. 93–5.

    Book  Google Scholar 

  18. Coburn MD, Jackson TE. Picrylamino-substituted heterocycles, III. 1,2,4-triazoles. J Heterocycl Chem. 1968;5:199–203.

    Article  CAS  Google Scholar 

  19. Gaussian 09. Revision B.01. 2009.

  20. Politzer P, Lane P, Concha MC. Computational determination of nitroaromatic solid phase heats of formation. Struct Chem. 2004;15:469–78.

    Article  CAS  Google Scholar 

  21. Byrd EFC, Rice BM. Improved prediction of heats of formation of energetic materials using quantum mechanical calculations. J Phys Chem A. 2006;110:1005–13.

    Article  CAS  Google Scholar 

  22. Özkaramete E, Şenocak N, İnal EK, Öz S, Svoboda I, Atakol O. Experimental and computational studies on the thermal degradation of nitroazidobenzenes. Propellants, Explos, Pyrotech. 2013;38:113–9.

    Article  Google Scholar 

  23. Şen N, Özkaramete E, Yılmaz N, Öz S, Svoboda IM, Akay A, Atakol O. Thermal decomposition of dinitro-chloro-azido benzenes: a comparison of theoretical and experimental results. J Energ Mater. 2014;32:1–15.

    Article  Google Scholar 

  24. Klapötke TM. Chemsitry of high-energy materials. Berlin: Walter de Gruyter; 2012. p. 75–9.

    Book  Google Scholar 

  25. Becke AD. Correlation energy of an inhomogeneous electron gas: A coordinate-space model. J Chem Phys. 1988;88:1053–62.

    Article  CAS  Google Scholar 

  26. Wilson AK, Van Mourik T, Dunning TH. Gaussian basis sets for use in correlated molecular calculations. VI. Sextuple zeta correlation consistent basis sets for boron through neon. J Mol Struct. 1996;388:339–49.

    Article  CAS  Google Scholar 

  27. Politzer P, Lane P, Concha MC. Determination of nitroaromatic solid phase heats of formation. Struct Chem. 2004;15:468–79.

    Article  Google Scholar 

  28. Gökçınar E, Klapötke TM, Bellamy AJ. Computational study on 2,6-diamino-3,5-dinitropyrazine and its 1-oxide and 1,4-dioxide derivatives. J Mol Struct THEOCHEM. 2010;953:18–23.

    Article  Google Scholar 

  29. Akhavan J. The chemistry of explosives (RSC paperbacs). Cambridge: The Royal Society of Chem; 1998. p. 1–11.

    Google Scholar 

  30. Bailey AS, Case JR. 4:6-dinitrobenzofuroxan, nitrobenzodifuroxan and benzotrifuroxan: a new series of complex-forming reagents for aromatic hydrocarbons. Tetrahedron. 1958;3:113–31.

    Article  CAS  Google Scholar 

  31. Reddy GO, Murall BKM, Chotterjee AK. Thermal study on picryl azide (2-azido-1,3,5-trinitrobenzene) decomposition using simultaneous thermogravimetry and differential scanning calorimetry. Propellants, Explos, Pyrotech. 1983;8:29–33.

    Article  CAS  Google Scholar 

  32. Shremetev AB, Aleksandrova NS, Ignat NV, Schulte M. Straightforward one-pot synthesis of benzofuroxans from o-halonitrobenzenes in Ionic liquids. Mendeleev Commun. 2012;22:95–7.

    Article  Google Scholar 

  33. Cardillo P, Gigante L, Lunghi A, Zanirato P. Revisiting the thermal decomposition of five ortho-substituted phenyl azides by calorimetric technics. J Therm Anal Calorim. 2010;100:191–8.

    Article  CAS  Google Scholar 

  34. Fu XL, Fan XZ, Wang BZ, Huo H, Li JZ, Hu RZ. Thermal behavior, decomposition mechanism and thermal safety of 5,7-diamino-4,6-dinitrobenzofuroxan (CL-14). J Therm Anal Calorim. 2016;124:993–1001.

    Article  CAS  Google Scholar 

  35. Standard Reference Database Number 69. National Institute of Standards and Technology. Gaitherburg, http://webbook.nist.gov/chemistry. Accessed 20 Dec 2013.

  36. Keshavarz MH. Predicting condensed phase heat of formation of nitroaromatic compounds. J Hazard Mater. 2009;169:890–900.

    Article  CAS  Google Scholar 

  37. Keshavarz MH. Predicting condensed phase heat of formation of energetic compounds. J Hazard Mater. 2011;190:330–44.

    Article  CAS  Google Scholar 

  38. Tang Y, Yang H, Hu X, Huang H, Lu C, Cheng G. A novel N–N bond cleavage in 1,5-diaminotetrazole. J MatER Chem A. 2014;2:4127–31.

    Article  CAS  Google Scholar 

  39. Xiaohong L, Qingdong C, Xianzhou Z. Density functional theory study of several nitrotriazole derivatives. J Energ Mater. 2010;28:251–72.

    Article  Google Scholar 

  40. Shoaib MA, Cho SG, Choi CH. Fast and accurate prediction of heat of formation by G4MP2-SFM parameterization scheme. Chem Phys Lett. 2014;599:57–62.

    Article  CAS  Google Scholar 

  41. Atkins P, Paula JD. Atkin’s physical chemistry. 8th ed. Oxford: Oxford University Press; 2006. p. 45.

    Google Scholar 

  42. Kubota N. Propellants and explosives, thermochemical and aspects of combustion. Weinheim: Wiley; 2007. p. 23–39.

    Google Scholar 

  43. Agrawal JP. High energy materials. Weinheim: Wiley; 2010. p. 1–33.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aynur Ozler Yigiter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yigiter, A.O., Atakol, M.K., Levent Aksu, M. et al. Thermal characterization and theoretical and experimental comparison of picryl chloride derivatives of heterocyclic energetic compounds. J Therm Anal Calorim 127, 2199–2213 (2017). https://doi.org/10.1007/s10973-016-5766-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5766-2

Keywords

Navigation