Journal of Thermal Analysis and Calorimetry

, Volume 127, Issue 3, pp 2059–2074 | Cite as

Space-resolved thermal properties of thermoplastics reinforced with carbon nanotubes

  • Pauline Rivière
  • Tiina Nypelö
  • Orlando J. Rojas
  • Andreas Klug
  • Norbert Mundigler
  • Rupert Wimmer


Composites comprising biobased poly(lactic acid) (PLA) and polyethylene (Bio-PE) were reinforced with multi-walled carbon nanotubes (MWCNTs). These nanocomposites were analyzed using space-resolved thermal analysis (TA) integrated with atomic force microscopy. The deflection temperature, which indicates thermal-induced expansion and thermal transitions of the composite, was monitored by nanoscale TA (nanoTA) utilizing the displacement of a cantilever in contact with the material. Results were compared to bulk electrical, mechanical and thermal properties. Electrical conductivity was detected at lower MWCNT loadings for PLA than for Bio-PE (at 2.5 vs. 5 mass%). Maximal electrical conductivity of 27 S m−1 for PLA and 0.7 S m−1 for Bio-PE-based samples was reached at 10 mass% MWCNT loading. Tensile behavior combined with thermogravimetric analysis indicated strong MWCNT–Bio-PE interactions, in contrast to PLA. The glass transition and melting temperature measured by differential scanning calorimetry (DSC) were not changed by the increase in MWCNT loading. Increased deflection temperature was registered by bulk heat deflection measurements on Bio-PE, but not for PLA. The thermal transitions obtained by nanoTA at the nanoscale were in the same temperature range as the first transitions observed upon temperature ramp in DSC (e.g., glass transition and melt temperatures of PLA and Bio-PE, respectively). Remarkably, thermal expansion was detected by nanoTA for PLA- and Bio-PE-based composites below electrical percolation threshold as well as an increase in PLA softening temperature. Space-resolved nanothermal analysis revealed thermal phenomena that are otherwise overlooked when bulk methods are applied.


Nanocomposite Thermoplastic Conductivity Nanothermal AFM Nanoindentation 



We gratefully acknowledge the assistance provided by the Institute of Wood Technology and Renewable Materials, as well as the Institute of Natural Materials Technologies, both at BOKU, Tulln. Paul Patter and Prof. Emil J. W. List-Kratochvil from the NanoTecCenter Weiz are acknowledged for their support concerning the electrical conductivity measurements. We would like to thank the Kompetenzzentrum Holz GmbH for providing access to various measuring equipments, i.e., Lukas Sobczak and Christoph Jocham for their support during the experiments. We would also like to thank Prof. Dietmar Pum of the Department of Nanobiotechnology, BOKU. Finally, Dr. Soledad Peresin from VTT Technical Research Centre of Finland is thanked for the initiation of the nanothermal analysis work. NatureWorks® and C-polymers are acknowledged for providing the raw materials.


The presented study received substantial financial support from the Government of Lower Austria.

Supplementary material

10973_2016_5751_MOESM1_ESM.tif (855 kb)
Fig. A1 Method of electrical surface conductivity measurement with ring electrodes (ring-e) (a) and with four-point measurement method (b), where R is the ohmmeter, S the current source, I the ammeter and U the voltmeter, d and s correspond to distances in m between electrodes (TIFF 854 kb)
10973_2016_5751_MOESM2_ESM.tif (831 kb)
Fig. A2 Tensile strength and Young’s modulus of PLA (a)- and Bio-PE (b)-based nanocomposites, averaged from ten tensile tests realized by the standard ISO 527 (TIFF 831 kb)
10973_2016_5751_MOESM3_ESM.tif (2.7 mb)
Fig. A3 Effect of heating rate (HR) on the thermal ramp deflection versus temperature (a) and the resulting indentation (b) (TIFF 2741 kb)
10973_2016_5751_MOESM4_ESM.tif (647 kb)
Table A4 Softening temperature of the Bio-PE and PLA composites derived from the nanothermal analysis and thermo-oxidative degradation temperatures and maximal speed of degradation derived from TG (TIFF 646 kb)
10973_2016_5751_MOESM5_ESM.tif (1.6 mb)
Fig. A5 Width and depth of the indentation in PLA (a) and Bio-PE (b) composites induced by the nanothermal ramping (NanoTA measurements) (TIFF 1633 kb)


  1. 1.
    Song M, Hourston DJ, Grandy DB, Reading M. An application of micro-thermal analysis to polymer blends. J Appl Polym Sci. 2001;81:2136–41.Google Scholar
  2. 2.
    Gotzen NA, Van Assche G, Ghanem A, Van Ingelgem Y, Hubin A, Van Mele B. Micro- and nano-thermal analysis applied to multi-layered biaxially-oriented polypropylene films. J Therm Anal Calorim. 2009;95:207–13.CrossRefGoogle Scholar
  3. 3.
    Souier T, Samad YA, Lalia BS, Hashaikeh R, Chiesa M. Nanoscale thermal analysis of multiphase polymer nanocomposites. J Phys Chem C. 2012;116:8849–56.CrossRefGoogle Scholar
  4. 4.
    Nikiforov MP, Gam S, Jesse S, Composto RJ, Kalinin SV. Morphology mapping of phase-separated polymer films using nanothermal analysis. Macromolecules. 2010;43:6724–30.CrossRefGoogle Scholar
  5. 5.
    Ago M, Okajima K, Jakes JE, Park S, Rojas OJ. Lignin-based electrospun nanofibers reinforced with cellulose nanocrystals. Biomacromolecules. 2012;13:918–26.CrossRefGoogle Scholar
  6. 6.
    Germinario LT, Shang PP. Advances in nano thermal analysis of coatings. J Therm Anal Calorim. 2008;93:207–11.CrossRefGoogle Scholar
  7. 7.
    Vähä-Nissi M, Kauppi E, Sahagian K, Johansson L-S, Peresin MS, Sievänen J, et al. Growth of thin Al2O3 films on biaxially oriented polymer films by atomic layer deposition. Thin Solid Films. 2012;522:50–7.CrossRefGoogle Scholar
  8. 8.
    Ragauskas AJ, Williams C, Davison B, Britovsek G, Cairney J, Eckert C, et al. The path forward for biofuels and biomaterials. Science. 2006;311:484–9.CrossRefGoogle Scholar
  9. 9.
    Breulmann M, Künkel A, Philipp S, Reimer V, Siegenthaler KO, Skupin G, Yamamoto, M. Polymers, biodegradable. In: Ullmann's Encyclopedia of Industrial Chemistry.
  10. 10.
    Castro D, Ruvolo-Filho A, Frollini E. Materials prepared from biopolyethylene and curaua fibers: composites from biomass. Polym Test. 2012;31:880–8.CrossRefGoogle Scholar
  11. 11.
    Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S. Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf. 2010;9:552–71.CrossRefGoogle Scholar
  12. 12.
    Costa P, Silva J, Ansón-Casaos A, Martinez MT, Abad MJ, Viana J, et al. Effect of carbon nanotube type and functionalization on the electrical, thermal, mechanical and electromechanical properties of carbon nanotube/styrene-butadiene-styrene composites for large strain sensor applications. Compos Part B Eng. 2014;61:136–46.CrossRefGoogle Scholar
  13. 13.
    Velasco-Santos C, Martinez-Hernandez AL, Castano VM. Carbon nanotube-polymer nanocomposites: the role of interfaces. Compos Interfaces. 2005;11:567–86.CrossRefGoogle Scholar
  14. 14.
    Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–8.CrossRefGoogle Scholar
  15. 15.
    Corcione C, Frigione M. Characterization of nanocomposites by thermal analysis. Materials (Basel). 2012;5:2960–80.CrossRefGoogle Scholar
  16. 16.
    Ge JJ, Hou H, Li Q, Graham MJ, Greiner A, Reneker DH, et al. Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments: electrospun composite nanofiber sheets. J Am Chem Soc. 2004;126:15754–61.CrossRefGoogle Scholar
  17. 17.
    Beyer G. Short communication: carbon nanotubes as flame retardants for polymers. Fire Mater. 2002;26:291–3.CrossRefGoogle Scholar
  18. 18.
    Moniruzzaman M, Winey K. Polymer nanocomposites containing carbon nanotubes. Macromolecules. 2006;39:5194–205.CrossRefGoogle Scholar
  19. 19.
    Rajeshwari P, Dey TK. Structural and thermal properties of HDPE/n-AlN polymer nanocomposites. J Therm Anal Calorim. 2014;118:1513–30.CrossRefGoogle Scholar
  20. 20.
    Schartel B, Pötschke P, Knoll U, Abdel-Goad M. Fire behaviour of polyamide 6/multiwall carbon nanotube nanocomposites. Eur Polym J. 2005;41:1061–70.CrossRefGoogle Scholar
  21. 21.
    Schartel B, Braun U, Knoll U, Bartholmai M, Goering H, Neubert D, et al. Mechanical, thermal, and fire behavior of bisphenol a polycarbonate/multiwall carbon nanotube nanocomposites. Sci: Polym Eng; 2008.Google Scholar
  22. 22.
    Byrne MT, Gun’ko YK. Recent advances in research on carbon nanotube-polymer composites. Adv Mater. 2010;22:1672–88.CrossRefGoogle Scholar
  23. 23.
    Alig I, Lellinger D, Dudkin SM, Pötschke P. Conductivity spectroscopy on melt processed polypropylene–multiwalled carbon nanotube composites: recovery after shear and crystallization. Polymer. 2007;48:1020–9.CrossRefGoogle Scholar
  24. 24.
    Zhang H, Zhang Z. Impact behaviour of polypropylene filled with multi-walled carbon nanotubes. Eur Polym J. 2007;43:3197–207.CrossRefGoogle Scholar
  25. 25.
    Villmow T, Pötschke P, Pegel S, Häussler L, Kretzschmar B. Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix. Polymer. 2008;49:3500–9.CrossRefGoogle Scholar
  26. 26.
    Cadek M, Coleman JN, Ryan KP, Nicolosi V, Bister G, Fonseca A, et al. Reinforcement of polymers with carbon nanotubes: the role of nanotube surface area. Nano Lett. 2004;4:353–6.CrossRefGoogle Scholar
  27. 27.
    Kodjie S, Li L, Li B, Cai W, Li C, Keating M. Morphology and crystallization behavior of HDPE/CNT nanocomposite. J Macromol Sci Part B Phys. 2006;45:231–45.CrossRefGoogle Scholar
  28. 28.
    Moon S-I, Jin F, Lee C, Tsutsumi S, Hyon S-H. Novel carbon nanotube/poly(l-lactic acid) nanocomposites; their modulus, thermal stability, and electrical conductivity. Macromol Symp. 2005;224:287–96.CrossRefGoogle Scholar
  29. 29.
    Rivière P, Nypelö TE, Obersriebnig M, Bock H, Müller M, Mundigler N, et al. Unmodified multi-wall carbon nanotubes in poly-lactic acid for electrically-conductive injection moulded composites. J Thermoplast Compos Mater. doi: 10.1177/0892705716649651.
  30. 30.
    Novais RM, Simon F, Pötschke P, Villmow T, Covas JA, Paiva MC. Poly(lactic acid) composites with poly(lactic acid)-modified carbon nanotubes. J Polym Sci Part A Polym Chem. 2013;51:3740–50.CrossRefGoogle Scholar
  31. 31.
    Lisunova MO, Mamunya YP, Lebovka NI, Melezhyk AV. Percolation behaviour of ultrahigh molecular weight polyethylene/multi-walled carbon nanotubes composites. Eur Polym J. 2007;43:949–58.CrossRefGoogle Scholar
  32. 32.
    Liu F, Zhang X, Li W, Cheng J, Tao X, Li Y, et al. Investigation of the electrical conductivity of HDPE composites filled with bundle-like MWNTs. Compos Part A Appl Sci Manuf. 2009;40:1717–21.CrossRefGoogle Scholar
  33. 33.
    Valentino O, Sarno M, Rainone NG, Nobile MR, Ciambelli P, Neitzert HC, et al. Influence of the polymer structure and nanotube concentration on the conductivity and rheological properties of polyethylene/CNT composites. Phys E Low Dimens Syst Nanostruct. 2008;40:2440–5.CrossRefGoogle Scholar
  34. 34.
    Mcnally T, Pötschke P, Halley P, Murphy M, Martin D, Bell SEJ, et al. Polyethylene multiwalled carbon nanotube composites. Polymer. 2005;46:8222–32.CrossRefGoogle Scholar
  35. 35.
    Villmow T, Pegel S, Pötschke P, Wagenknecht U. Influence of injection molding parameters on the electrical resistivity of polycarbonate filled with multi-walled carbon nanotubes. Compos Sci Technol. 2008;68:777–89.CrossRefGoogle Scholar
  36. 36.
    Bocchini S, Frache A, Camino G, Claes M. Polyethylene thermal oxidative stabilisation in carbon nanotubes based nanocomposites. Eur Polym J. 2007;43:3222–35.CrossRefGoogle Scholar
  37. 37.
    Barus S, Zanetti M, Bracco P, Musso S, Chiodoni A, Tagliaferro A. Influence of MWCNT morphology on dispersion and thermal properties of polyethylene nanocomposites. Polym Degrad Stab. 2010;95:756–62.CrossRefGoogle Scholar
  38. 38.
    Krul LP, Volozhyn AI, Belov DA, Poloiko NA, Artushkevich AS, Zhdanok SA, et al. Nanocomposites based on poly-d, l-lactide and multiwall carbon nanotubes. Biomol Eng. 2007;24:93–5.CrossRefGoogle Scholar
  39. 39.
    Kim H-S, Chae YS, Kwon HI, Yoon J-S. Thermal degradation behaviour of multi-walled carbon nanotube-reinforced poly(l-lactide) nanocomposites. Polym Int. 2009;58:826–31.CrossRefGoogle Scholar
  40. 40.
    Wu D, Wu L, Zhang M, Zhao Y. Viscoelasticity and thermal stability of polylactide composites with various functionalized carbon nanotubes. Polym Degrad Stab. 2008;93:1577–84.CrossRefGoogle Scholar
  41. 41.
    Tábi T, Sajó IE, Szabó F, Luyt AS, Kovács JG. Crystalline structure of annealed polylactic acid and its relation to processing. Express Polym Lett. 2010;4:659–68.CrossRefGoogle Scholar
  42. 42.
    Xu Z, Niu Y, Yang L, Xie W, Li H, Gan Z, et al. Morphology, rheology and crystallization behavior of polylactide composites prepared through addition of five-armed star polylactide grafted multiwalled carbon nanotubes. Polymer. 2010;51:730–7.CrossRefGoogle Scholar
  43. 43.
    Zhao Y, Qiu Z, Yan S, Yang W. Crystallization behavior of biodegradable poly (l-lactide)/multiwalled carbon nanotubes nanocomposites from the amorphous state. Polym Eng Sci. 2011;51:1564–73.CrossRefGoogle Scholar
  44. 44.
    Díez-Pascual A, Naffakh M. Enhancing the thermomechanical behaviour of poly (phenylene sulphide) based composites via incorporation of covalently grafted carbon nanotubes. Compos Part A Appl Sci Manuf. 2013;54:10–9.CrossRefGoogle Scholar
  45. 45.
    Remmert JL. Nano thermal and contact potential analysis with heated probe tips. 2007.
  46. 46.
    Zhang J, Bunker M, Parker A, Madden-Smith C, Patel N, Roberts C. The stability of solid dispersions of felodipine in polyvinylpyrrolidone characterized by nanothermal analysis. Int J Pharm. 2011;414:210–7.CrossRefGoogle Scholar
  47. 47.
    Dai X, Moffat JG, Wood J, Reading M. Thermal scanning probe microscopy in the development of pharmaceuticals. Adv Drug Deliv Rev. 2012;64:449–60.CrossRefGoogle Scholar
  48. 48.
    Alam MK, Islam MT, Mina MF, Gafur MA. Structural, mechanical, thermal, and electrical properties of carbon black reinforced polyester resin composites. J Appl Polym Sci. 2014;131:1–11.Google Scholar
  49. 49.
    Tang W, Santare M, Advani S. Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films. Carbon. 2003;41:2779–85.CrossRefGoogle Scholar
  50. 50.
    Yoon J, Jeong Y, Lee S, Min B. Influences of poly (lactic acid)-grafted carbon nanotube on thermal, mechanical, and electrical properties of poly (lactic acid). Polym Adv Technol. 2009;20:631–8.CrossRefGoogle Scholar
  51. 51.
    Al-Saleh MH, Sundararaj U. A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon. 2009;47:2–22.CrossRefGoogle Scholar
  52. 52.
    Nuriel S, Liu L, Barber AH, Wagner HD. Direct measurement of multiwall nanotube surface tension. Chem Phys Lett. 2005;404:263–6.CrossRefGoogle Scholar
  53. 53.
    Bao SP, Tjong SC. Mechanical behaviors of polypropylene/carbon nanotube nanocomposites: the effects of loading rate and temperature. Mater Sci Eng A. 2008;485:508–16.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Department of Agrobiotechnology (IFA-Tulln), Institute for Natural Materials TechnologyUniversity of Natural Resources and Life SciencesViennaAustria
  2. 2.Department of Material Sciences and Process Engineering, Institute of Wood Technology and Renewable MaterialsUniversity of Natural Resources and Life SciencesViennaAustria
  3. 3.Division of Chemistry of Renewable Resources, Department of ChemistryUniversity of Natural Resources and Life SciencesViennaAustria
  4. 4.Department of Forest Products ChemistryAalto University School of Chemical TechnologyEspooFinland
  5. 5.NanoTecCenter Weiz Forschungsgesellschaft GmbHWeizAustria

Personalised recommendations