Skip to main content
Log in

Brazilian Dioscoreaceas starches

Thermal, structural and rheological properties compared to commercial starches

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Determination of the characteristics of native starches is crucial in order to select their best application in various industrial fields. Thus, two different types of non-traditional native starches from the Dioscoreaceas species (Dioscorea sp. and Dioscorea piperifolia Humb. var. Wild) were studied regarding their thermal, structural and rheological properties. The results were contrasted with traditional commercial starch sources (potato, cassava and corn). From the thermogravimetric results (TG/DTG), D. piperifolia starch obtained the highest thermal stability of the samples, except for potato starch. Furthermore, using differential scanning calorimetry and viscoamylograph profiles (RVA), it was found that the Dioscoreaceas starches presented a higher onset (T o) temperature and susceptibility to retrogradation. They also showed lower values in relation to relative crystallinity, which was calculated from their X-ray patterns and tendency to white (L*) colour. The shapes of the Discoreaceas starch granules were determined using electron microscopy; it was found that as the potato starch the Dioscoreaceas starches showed a wide range of particle size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hornung PS, Oliveira CS, Lazzaroto M, Lazzarotto SRS, Schnitzler E. Investigation of the proto-oxidation of cassava starch granules. J Therm Anal Calorim. 2015;123:2129–37.

    Article  Google Scholar 

  2. Oliveira CS, Andrade MMP, Colman TAD, Costa FJOG, Schnitzler E. Thermal, structural and rheological behavior of native and modified waxy corn starch with hydrochloric acid at different tempertures. J Therm Anal Calorim. 2014;115:13–8.

    Article  Google Scholar 

  3. Huang J, Zhao L, Man J, Wang J, Zhou W, Huai H, Wei C. Comparison of physicochemical properties of B-type nontraditional starches from different sources. Int J Biol Macromol. 2015;78:165–72.

    Article  CAS  Google Scholar 

  4. Leonel M, Cereda MP. Caracterização físico-química de algumas tuberosas amiláceas. Ciênc Tecnol Aliment. 2002;22:65–9.

    Article  CAS  Google Scholar 

  5. Nascimento WF, Siqueira MVBM, Ferreira AB, Ming LC, Peroni N, Veasey EA. Distribution, management and diversity of the endangered Ameridian yam (Dioscorea trifida L.). Braz J Biol. 2015;75:104–13.

    Article  CAS  Google Scholar 

  6. Okunlola A, Odeku OA. Evaluation of starches obtained from four Dioscorea species as biding agent in chloroquine phosphate tablet formulations. Saudi Pharm J. 2011;19:95–105.

    Article  CAS  Google Scholar 

  7. Jiang Q, Gao W, Xia L, Xia Y, Wang H, Wu S, Huang L, Liu C, Xiao P. Characterizations of starches isolated from five different Dioscorea L. species. Food Hydrocoll. 2012;29:35–41.

    Article  Google Scholar 

  8. Jiang Q, Gao W, Shi Y, Xia L, Wang W, Huang L, Xiao P. Physicochemical properties and in vitro digestion of starches from different Dioscorea plants. Food Hydrocoll. 2013;32:432–9.

    Article  CAS  Google Scholar 

  9. Falade KO, Ayetigbo OE. Effects of annealing, acid hydrolysis and citric acid modifications on physical and functional properties of starches from four yam (Dioscorea spp.) cultivars. Food Hydrocoll. 2015;43:529–39.

    Article  CAS  Google Scholar 

  10. Bicudo SCW, Demiate IM, Bannach G, Lacerda LG, Carvalho-Filho MAS, Ionashiro M, Schnitzler E. Thermoanalytical study and characterization of native starches of Paraná pine seeds (Araucaria angustifolia, Bert O. Ktze) and European chestnut seeds (Castanea sativa Mill). Eclet Quim. 2009;34:7–12.

    Article  CAS  Google Scholar 

  11. Sangseethong K, Termvejsayanon N, Sriroth K. Characterization of physicochemical properties of hypochlorite and peroxide-oxidized cassava starches. Carbohydr Polym. 2010;82:446–53.

    Article  CAS  Google Scholar 

  12. Lacerda LG, Colman TAD, Baub T, Carvalho MAS, Demiate IM, Vasconcelos EC, Schnitzler E. Thermal, structural and rheological properties of starch from avocado seeds (Persea americana, Miller) modified with standard hypochlorite sodium. J Therm Anal Calorim. 2014;115:1893–9.

    Article  CAS  Google Scholar 

  13. Cordoba LP, Ribeiro LS, Colman TAD, Oliveira CS, Andrade MMP, Costa FJOG, Schnitzler E. Effect of hydrochloric acid in different concentrations and temperatures up to some properties of organic cassava starch. Braz J Therm Anal. 2013;2:6–11.

    Article  Google Scholar 

  14. Colman TAD, Demiate IM, Schnitzler E. The effect of microwave radiation on some thermal, rheological and structural properties of cassava starch. J Therm Anal Calorim. 2014;115:2245–52.

    Article  CAS  Google Scholar 

  15. Andrade MMP, Oliveira CS, Colman TAD, Costa FJOG, Schnitzler E. Effects of heat-moisture treatment on organic cassava starch. J Therm Anal Calorim. 2014;115:2115–22.

    Article  CAS  Google Scholar 

  16. Granza AG, Travalini AP, Farias FO, Colman TAD, Schnitzler S, Demiate IM. Effects of acetylation and acetylation–hydropropylation (dual-modification) on the properties of starch from Carioca bean (Phaseolus vulgaris L.). J Therm Anal Calorim. 2014;119:769–77.

    Article  Google Scholar 

  17. Beninca C, Colman TAD, Lacerda LG, Carvalho-Filho MAS, Demiate IM, Schnitzler E. Thermal, rheological, and structural behaviors of natural and modified cassava starch granules, with hypochlorite solutions. J Therm Anal Calorim. 2013;111:2217–22.

    Article  CAS  Google Scholar 

  18. Zhang L, Xie W, Zhao X, Liu Y, Gao W. Study on the morphology, crystalline structure and thermal properties of yellow ginger starch acetates with different degrees of substitution. Thermochim Acta. 2009;495:57–62.

    Article  CAS  Google Scholar 

  19. Alberton C, Colman TAD, Souza JA, Oliveira CS, Andrade PMM, Schnitzler E. Thermal analysis, rheology, X-ray diffractometry and Atomic Force microscopy in the evaluation of binary mixtures of “starches hydrocolloids”. J Microbiol Biotechnol Food Sci. 2014;3:305–9.

    Google Scholar 

  20. Hornung PS, Granza AG, Oliveira CS, Lazzaroto M, Schnitzler E. Study of the effects of ultraviolet light and sodium hypochlorite solutions on properties of cassava starch granules. Food Biophys. 2015;10:368–74.

    Article  Google Scholar 

  21. Adamovicz JAL, Cordoba LP, Ribeiro LS, Schnitzler E, Oliveira CS. Evaluation on thermal, rheological and structural properties on the mixture of potato starch and pectin. Carpath J Food Sci Technol. 2015;7:45–52.

    CAS  Google Scholar 

  22. Lacerda LG, Filho MASC, Demiate IM, Bannach G, Ionashiro M, Schnitzler E. Thermal behaviour of corn starch granules under action of fungal a-amylase. J Therm Anal Calorim. 2008;93:445–9.

    Article  CAS  Google Scholar 

  23. Jayakody L, Hoover R, Liu Q, Donner E. Studies on tuber starches. II. Molecular structure, composition and physicochemical properties of yam (Dioscorea sp.) starches grown in Sri Lanka. Carbohydr Polym. 2007;69:148–63.

    Article  CAS  Google Scholar 

  24. Cooke D, Gidley MJ. Loss of crystalline and molecular order during starch gelatinization: origin of the enthalpic transition. Carbohydr Res. 1992;227:103–12.

    Article  CAS  Google Scholar 

  25. N’da Kouamé V, Handschin S, Derungs M, Amani G, Conde-Petit B. Thermal properties of new varieties of yam starches. Starch Stärke. 2011;63:747–53.

    Article  Google Scholar 

  26. Costa FJOG, Leivas CL, Waszczynsky N, Godoi RCB, Helm CV, Colman TAD, Schnitzler E. Characterization of native starches of seeds of Araucaria angustifolia from four germplasm collection. Thermochim Acta. 2013;565:172–7.

    Article  Google Scholar 

  27. Aggarwal P, Dollimore DA. Thermal analysis investigation of partially hydrolyzed starch. Thermochim Acta. 1998;319:17–25.

    Article  CAS  Google Scholar 

  28. Kenshun L, Rosentrater KA. Distillers grains: production, properties and utilization. 1st ed. Dublin: AOCS Press; 2016.

    Google Scholar 

  29. Pérez E, Gibert O, Rolland-Sabaté A, Segovia X, Sánchez T, Reynes M, Dufour D. Evaluation of the functional properties of promising Dioscorea trifida L. waxy starches for food innovation. Int. J Carbohydr Chem. 2011;2011:1–7.

    Article  Google Scholar 

  30. Xia L, Wenyuan G, Qianqian J, Yanli W, Xinhua G, Luqi H. Physicochemical, crystalline, and thermal properties of native, oxidized, acid, and enzyme hydrolyzed Chinese yam (Dioscorea opposite Thunb) starch. Starch Stärke. 2011;63:616–24.

    Article  Google Scholar 

  31. Pérez E, Rolland-Sabaté A, Dufour D, Guzman R, Tapia M, Raymundez M, Ricci J, Guilois S, Pontoire B, Reynes M, Gibert O. Isolated starches from yams (Dioscorea sp.) grown at the Venezuelan Amazons: structure and functional properties. Carbohydr Polym. 2013;98:650–8.

    Article  Google Scholar 

  32. Campbell MR, Li J, Berke TG, Glover DV. Variation of starch granule size in tropical maize germ plasm. Cereal Chem. 1996;75:536–8.

    Google Scholar 

  33. Zhou Q, Shi W, Meng X, Liu Y. Studies on the morphological, crystalline, thermal properties of an underutilized starch from yam Dioscoreae zingiberensis CH Wright. Starch Stärke. 2013;65:123–33.

    Article  CAS  Google Scholar 

  34. Wongsagonsup R, Pujchakarn T, Jitrakbumrung S, Chaiwat W, Fuongfuchat A, Varavinit S, Dangtip S, Suphantharika M. Effect of cross-linking on physicochemical properties of tapioca starch and its application in soup product. Carbohydr Polym. 2014;101:656–65.

    Article  CAS  Google Scholar 

  35. Tovar J, Melito C, Herrera E, Rascón A, Pérez E. Resistant starch formation does not parallel syneresis tendency in different starch gels. Food Chem. 2002;76:455–9.

    Article  CAS  Google Scholar 

  36. Aalcázar-Alay SC, Meireles MAA. Physicochemical properties, modifications and applications of starches from different botanical sources. Food Sci Technol. 2015;35:215–36.

    Google Scholar 

  37. Simková D, Lachman J, Hamouz K, Vokál B. Effect of cultivar, location and year on total starch, amylose, phosphorus content and starch grain size of high starch potato cultivars for food and industrial processing. Food Chem. 2013;141:3872–80.

    Article  Google Scholar 

  38. Koksel H, Masatcioglu T, Kahraman K, Ozturk S, Basman A. Improving effect of lyophilization on functional properties of resistant starch preparations formed by acid hydrolysis and heat treatment. J Cereal Sci. 2008;47:275–82.

    Article  CAS  Google Scholar 

  39. Riley CK, Adebayo SA, Wheatley AO, Asemota HN. Surface properties of yam (Dioscorea sp.) starch powders and potential for use as binders and disintegrants in drug formulations. Powder Technol. 2008;3:280–5.

    Article  Google Scholar 

  40. Mali S, Grossmann MVE, Yamachita F. Filmes de amido: Produção, propriedades e potencial de utilização. Semin Ciênc Agrár. 2010;31:137–56.

    Article  CAS  Google Scholar 

  41. Lin L, Cai C, Gilbert RG, Li E, Wang J, Wei C. Relationships between amylopectin molecular structures and functional properties of different-sized fractions of normal and high-amylose maize starches. Food Hydrocoll. 2016;52:359–68.

    Article  CAS  Google Scholar 

  42. Oli P, Ward R, Adhikari B, Torley P. Colour change in rice during hydration: effect of hull and bran layers. J Food Eng. 2016;173:49–58.

    Article  Google Scholar 

  43. Chung H-J, Chang H-I, Lim S-T. Physical aging of glassy normal and waxy rice starches: effect of crystallinity on glass transition and enthalpy relaxation. Carbohydr Polym. 2004;58:101–7.

    Article  CAS  Google Scholar 

  44. Rodrigues LL, Sousa MMD, Silva JN, Marques MJ, Brito P, Lima A. Caracterização físico-química e detecção de metabólitos secundários do cará molea (Dioscorea bulbífera). VII Connepi. 2012;7:1–6.

    Google Scholar 

  45. Falade KO, Christopher AS. Physical, functional, pasting and thermal properties of flours and starches of six Nigerian rice cultivars. Food Hydrocoll. 2015;44:479–90.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge CAPES,Brazil, for the financial resources provided and to C-LABMU—UEPG for the performed instrumental analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosemary Hoffmann Ribani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hornung, P.S., do Prado Cordoba, L., da Silveira Lazzarotto, S.R. et al. Brazilian Dioscoreaceas starches. J Therm Anal Calorim 127, 1869–1877 (2017). https://doi.org/10.1007/s10973-016-5747-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5747-5

Keywords

Navigation