Skip to main content
Log in

Risk assessment of potential gas odorants for the storage process

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

1-pentyne and 2-hexyne were assessed as replacements for sulphur-bearing odorants in fuel gases, particularly in the view of thermal risks associated with the storage of sulphur-bearing odorants. Both the alkynes were inactive when heated under pressurised nitrogen, but their exothermic behaviour and pressure profiles were found to change when heated in contact with pressurised air. The pressure profiles were considered based on the consumption of oxygen. The exothermic behaviours of 1-pentyne and 2-hexyne were compared both before and after the storage process using differential scanning calorimetry. While both species showed two exothermic peaks before storage, the thermal and pressure load applied during the storage process increased the heat released at low temperatures. Storage under pressurised air influenced the stability of the both the species as well as their exothermic behaviour. The results will help in the use of these odorants and safe handling of fuels containing them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cho CP, Kwon OS, Lee YJ. Effects of the sulfur content of liquefied petroleum gas on regulated and unregulated emissions from liquefied petroleum gas vehicle. Fuel. 2014;137:328–34.

    Article  CAS  Google Scholar 

  2. Oka Y, Yoshida T, Kondo T, Ito S, Katoh K. Study on the thermal stability of 2-hexyne, 1-pentyne, ethyl isocyanide, and n-butyl isocyanide as sulfur-free gas odorants. J Therm Anal Calorim. 2010;99:9–14.

    Article  CAS  Google Scholar 

  3. Bell S, Guirgis GA, Li Y, Durig JR. Far infrared spectrum, ab initio calculations, and conformational analysis of 1-pentyne. J Phys Chem A. 1997;101:5987–96.

    Article  CAS  Google Scholar 

  4. Traetteberg M, Bakken P, Hopf H. Unexpected conformational behavior of gaseous 1-pentyne. J Mol Struct. 1999;509:213–20.

    Article  CAS  Google Scholar 

  5. Durig JR, Drew BR. Conformational stability of 1-pentyne from temperature dependent FT-IR spectra of liquid rare gas solutions and ab initio calculations. J Mol Struct. 2001;560:247–59.

    Article  CAS  Google Scholar 

  6. Bella S, Zhub X, Guirgisb GA, Durig JR. Infrared and Raman spectra, conformational stability, ab initio calculations of structure, and vibrational assignment of 2-hexyne. J Mol Struct. 2002;616:135–58.

    Article  Google Scholar 

  7. Holme A, Sæthre LJ, Børve KJ, Thomas TD. Carbon 1s photoelectron spectroscopy of 1-pentyne conformers. J Mol Struct. 2009;920:387–92.

    Article  CAS  Google Scholar 

  8. Holme A, Børve KJ, Sæthre LJ, Thomas TD. Conformations and CH/π interactions in aliphatic alkynes and alkenes. J Phys Chem A. 2013;117:2007–19.

    Article  CAS  Google Scholar 

  9. Hamilton CA, Jackson SD, Kelly GJ. Spence R, de bruin D, competitive reactions in alkyne hydrogenation. Appl Catal A Gen. 2002;237:201–9.

    Article  CAS  Google Scholar 

  10. McGregor J, Gladden LF. The role of carbon deposits in the hydrogenation of C5 hydrocarbons. Appl Catal A Gen. 2008;345:51–7.

    Article  CAS  Google Scholar 

  11. Leveneur S, Estel L, Crua C. Thermal risk assessment of vegetable oil epoxidation. J Therm Anal Calorim. 2015;122:795–804.

    Article  CAS  Google Scholar 

  12. Kumasaki M, Takana K, Otsuka T. Influence of deteriorated solvent on induction period of Grignard reagent formation. J Therm Anal Calorim. 2015;120:633–9.

    Article  CAS  Google Scholar 

  13. Zang N, Qian XM, Liu ZY, Shu CM. Thermal hazard evaluation of cyclohexanone peroxide synthesis. J Therm Anal Calorim. 2016;124:1131–9.

    Article  CAS  Google Scholar 

  14. Kumasaki M, Sasahara K, Nakajima Y. Thermal sensitivities of triazole derivatives and dinitrobenzene mixtures from the perspective of charge transfer. J Therm Anal Calorim. 2016;. doi:10.1007/s10973-016-5330-0.

    Google Scholar 

  15. Chen WT, Chen WC, You ME, Tsai YT, Shu CM. Evaluation of thermal decomposition phenomenon for 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane by DSC and VSP2. J Therm Anal Calorim. 2015;122:1125–33.

    Article  CAS  Google Scholar 

  16. Sasahara K, Kumasaki M, Koshi M, Yoshitake H. Electronic interaction and pyrolysis behaviour of adenine and dinitrobenzene mixture. J Sci Technol Energ Mat. 2015;76:20–4.

    Google Scholar 

  17. Sasahara K, Kumasaki M, Date S, Koshi M. Electrostatic interaction and reaction behaviour of 1,2,4-triazole mixture with dinitrobenzene. ZAAC. 2015;641:786–91.

    CAS  Google Scholar 

  18. Liessmann G, Schmidt W, Reiffarth S. Data compilation of the Saechsische Olefinwerke Boehlen. Germany; 1995. p. 77.

  19. Belaribi-Boukais G, Ait-Kaci A, Delepine H, Jose J. Total vapor pressures between 263.15 K and 353.15 K and excess enthalpies at 303.15 K of binary mixtures of hex-2-yne + methanol, + ethanol, or + butan-1-ol. ELDATA Int Electron J Phys Chem Data. 1997;3:109–18.

    CAS  Google Scholar 

  20. Negadi L, Guetachew T, Ait-Kaci A, Jose J. Static measurements of the total vapor pressure of binary mixtures of dimethyl sulfoxide with hex-1-yne, hex-2-yne, or hex-3-yne at temperatures between 283 K and 363 K. ELDATA Int Electron J Phys Chem Data. 1997;3:91–100.

    CAS  Google Scholar 

  21. Trout CC, Badding JV. Solid state polymerization of acetylene at high pressure and low temperature. J Phys Chem A. 2000;104:8142–5.

    Article  CAS  Google Scholar 

  22. Gustin JC. Runaway reaction hazards in processing organic nitro compounds. Org Process Res Dev. 1998;2:27–33.

    Article  CAS  Google Scholar 

  23. Sales J, Mushtaq F, Christou MD, Nomen R. Study of major accidents involving chemical reactive substances Analysis and lessons learned. Trans IChemE Part B Process Saf Environ. 2007;85:117–24.

    Article  CAS  Google Scholar 

  24. Gustin JC. Influence of trace impurities on chemical reaction hazards. J Loss Prev Process Ind. 2002;15:37–48.

    Article  Google Scholar 

  25. Ponzio A, Senthoorselvan S, Yang W, Blasiak W, Eriksson O. Ignition of single coal particles in high-temperature oxidizers with various oxygen concentrations. Fuel. 2008;87:974–87.

    Article  CAS  Google Scholar 

  26. Zhang ZH, Balasubramanian R. Effects of oxygenated fuel blends on carbonaceous particulate composition and particle size distributions from a stationary diesel engine. Fuel. 2015;141:1–8.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministry of Economy, Trade and Industry Agency of Natural Resources and Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mieko Kumasaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumasaki, M., Oka, Y. Risk assessment of potential gas odorants for the storage process. J Therm Anal Calorim 126, 1757–1762 (2016). https://doi.org/10.1007/s10973-016-5742-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5742-x

Keywords

Navigation