Skip to main content
Log in

Organic nanoparticles as promising flame retardant materials for thermoplastic polymers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

New and well-dispersed polymer nanocomposites have been developed. Polypyrrole nanoparticles with an average nanoparticle size of 161 nm have been prepared. The polypyrrole nanoparticles were dispersed uniformly in acrylonitrile–butadiene–styrene polymer producing new polymer nanocomposites. The dispersed nanoparticles present a good flame retardant behavior for the developed polymer nanocomposites. Polypyrrole nanoparticles were doped with phosphoric acid, and the effect of dopant on thermal stability and flame retardancy was studied. Mass loadings effect of different polypyrrole nanoparticles on the dispersion, flammability and thermal properties of new polymer nanocomposites were investigated. Flame retardancy and thermal stability were improved. Rate of burning of new polymer nanocomposites achieved 82 % reduction compared to blank polymer. Peak heat release rate and total heat release of the polymer nanocomposites were reduced achieving 78 and 31 % reduction, respectively. Interestingly, the emission of toxic gases was suppressed by 35 % for both CO and CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ma H, Jun W, Zhengping F. Cross-linking of a novel reactive polymeric intumescent flame retardant to ABS copolymer and its flame retardancy properties. Polym Degrad Stab. 2012;97:1596.

    Article  CAS  Google Scholar 

  2. Morgan AB, Bundy M. Cone calorimeter analysis of UL-94 V-rated plastics. Fire Mater. 2007;31:257.

    Article  CAS  Google Scholar 

  3. Pawlowski KH, Schartel B. Flame retardancy mechanisms of aryl phosphates in combination with boehmite in bisphenol A polycarbonate/acrylonitrile–butadiene–styrene blends. Polym Degrad Stab. 2008;93:657.

    Article  CAS  Google Scholar 

  4. Hong N, Zhan J, Wang X, Stec AA, Hull TR, Ge H, Xing W, Song L, Hua Y. Enhanced mechanical thermal and flame retardant properties by combining graphene nanosheets and metal hydroxide nanorods for acrylonitrile–butadiene–styrene copolymer composites. Part A Appl Sci Manuf. 2014;64:203.

    Article  CAS  Google Scholar 

  5. Petsom A, Roengsumran S, Ariyaphattanakul A, Sangvanich P. An oxygen index evaluation of flammability for zinc hydroxystannate and zinc stannate as synergistic flame retardants for acrylonitrile–butadiene–styrene copolymer. Polym Degrad Stab. 2003;80:17.

    Article  CAS  Google Scholar 

  6. Attia NF, Hassan MA, Nour MA, Geckeler KE. Flame-retardant materials: synergistic effect of halloysite nanotubes on the flammability properties of acrylonitrile–butadiene–styrene composites. Polym Int. 2014;36:1168.

    Article  Google Scholar 

  7. Attia NF, Goda ES, Nour MA, Sabaa MW, Hassan MA. Novel synthesis of magnesium hydroxide nanoparticles modified with organic phosphate and their effect on the flammability of acrylonitrile–butadiene–styrene nanocomposites. Mater Chem Phys. 2015;168:147.

    Article  CAS  Google Scholar 

  8. Stretz HA, Wootan MW, Cassidy PE, Koo JH. Effect of exfoliation on poly(styrene-co-acrylonitrile)/montmorillonite nanocomposite flammability. Polym Adv Technol. 2005;16:239.

    Article  CAS  Google Scholar 

  9. Hong S-G, Chang S-Y. Fire performance and mechanical properties of acrylonitrile–butadiene–styrene copolymer/modified expandable graphite composites. Fire Mater. 2012;36:277.

    Article  CAS  Google Scholar 

  10. Prashantha K, Schmitt H, Lacrampe MF, Krawczak P. Mechanical behaviour and essential work of fracture of halloysite nanotubes filled polyamide 6 nanocomposites. Compos Sci Technol. 2011;71:1859.

    Article  CAS  Google Scholar 

  11. Marney DCO, Yang W, Russell LJ, Shen SZ, Nguyen T, Yuanb Q, Varley R, Li S. Phosphorus intercalation of halloysite nanotubes for enhanced fire properties of polyamide 6. Polym Adv Technol. 2012;23:1564.

    Article  CAS  Google Scholar 

  12. Piszczyk L, Danowska M, Mietlarek-Kropidłowska A, Szyszka M, Strankowski M. Synthesis and thermal studies of flexible polyurethane nanocomposite foams obtained using nanoclay modified with flame retardant compound. J Therm Anal Calorim. 2014;118:901.

    Article  CAS  Google Scholar 

  13. Attia NF, Abd El-Aal NS, Hassan MA. Facile synthesis of graphene sheets decorated nanoparticles and flammability of their polymer nanocomposites. Polym Degrad Stab. 2016;126:65.

    Article  CAS  Google Scholar 

  14. Laachachi A, Cochez M, Leroy E, Gaudon P, Ferriol M, Lopez Cuesta JM. Effect of Al2O3 and TiO2 nanoparticles and APP on thermal stability and flame retardance of PMMA. Polym Adv Technol. 2006;17:327.

    Article  CAS  Google Scholar 

  15. Marney DCO, Russell LJ, Wu DY, Nguyen T, Cramm D, Rigopoulos N, Wright N, Greaves M. The suitability of halloysite nanotubes as a fire retardant for nylon 6. Polym Degrad Stab. 2008;93:1971.

    Article  CAS  Google Scholar 

  16. Ma H, Tong L, Xu Z, Fang Z. Synergistic effect of carbon nanotube and clay for improving the flame retardancy of ABS resin. Nanotechnology. 2007;18:375602.

    Article  Google Scholar 

  17. Feng J, Hao J, Du J, Yang R. Using TGA/FTIR TGA/MS and cone calorimetry to understand thermal degradation and flame retardancy mechanism of polycarbonate filled with solid bisphenol A bis(diphenyl phosphate) and montmorillonite. Polym Degrad Stab. 2012;97:605.

    Article  CAS  Google Scholar 

  18. Wang X, Song L, Pornwannchai W, Hu Y, Kandola B. The effect of graphene presence in flame retarded epoxy resin matrix on the mechanical and flammability properties of glass fiber-reinforced composites. Compos Part A. 2013;53:88.

    Article  CAS  Google Scholar 

  19. Huang G, Liang H, Wang Y, Wang X, Gao J, Fei Z. Combination effect of melamine polyphosphate and graphene on flame retardant properties of poly(vinyl alcohol). Mater Chem Phys. 2012;132:520.

    Article  CAS  Google Scholar 

  20. Chen X, Ma C, Jia C. Synergistic effects between iron–graphene and ammonium polyphosphate in flame-retardant thermoplastic polyurethane. J Therm Anal Calorim. 2016;. doi:10.1007/s10973-016-5494-7.

    Google Scholar 

  21. Liu L, Zhang H, Sun L, Kong Q, Zhang J. Flame-retardant effect of montmorillonite intercalation iron compounds in polypropylene/aluminum hydroxide composites system. J Therm Anal Calorim. 2016;124:807.

    Article  CAS  Google Scholar 

  22. Dittrich B, Wartig K-A, Hofmann D, Mülhaupt R, Schartel B. Flame retardancy through carbon nanomaterials: carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene. Polym Degrad Stab. 2013;98:1495.

    Article  CAS  Google Scholar 

  23. Attia NF, Rao JP, Geckeler KE. Nanodiamond-polymer nanoparticle composites and their thin films. J Nanopart Res. 2014;16:2361.

    Article  Google Scholar 

  24. Unnikrishnan L, Mohanty S, Nayak SK. Evaluation of flammability and shear performance of layered silicate-reinforced styrenic polymer. J Therm Anal Calorim. 2016;125:187.

    Article  CAS  Google Scholar 

  25. Hong JY, Jeon SO, Jang J, Song K, Kim SH. A facile route for the preparation of organic bistable memory devices based on size-controlled conducting polypyrrole nanoparticles. Org Electron. 2013;14:979.

    Article  CAS  Google Scholar 

  26. Chiou NR, Epstein AJ. Polyaniline nanofibers prepared by dilute polymerization. Adv Mater. 2005;17:1679.

    Article  CAS  Google Scholar 

  27. Attia NF, Lee SM, Kim HJ, Geckeler KE. Nanoporous polypyrrole: preparation and hydrogen storage properties. Int J Energy Res. 2014;38:466.

    Article  CAS  Google Scholar 

  28. Zha Z, Yue X, Ren Q, Dai Z. Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Adv Mater. 2013;25:777.

    Article  CAS  Google Scholar 

  29. Attia NF, Lee SM, Kim HJ, Geckeler KE. Preparation of polypyrrole nanoparticles and their composites: effect of electronic properties on the hydrogen adsorption. Polym Int. 2015;64:696.

    Article  CAS  Google Scholar 

  30. Geniès EM, Boyle A, Lapkowski M, Tsintavis C. Polyaniline: a historical survey. Synth Met. 1990;36:139.

    Article  Google Scholar 

  31. Attia NF, Abissy AA, Hassan MA. Novel synthesis and characterization of conductive and flame retardant textile fabrics. Polym Adv Technol. 2015;26:1551.

    Article  CAS  Google Scholar 

  32. Varesano A, Tonin C, Ferrero F, Stringhetta MJ. Thermal stability and flame resistance of polypyrrole-coated PET fibres. Therm Anal Calorim. 2008;94:559.

    Article  CAS  Google Scholar 

  33. Zhang X, Yan X, Guo J, Liu Z, Jiang D, He Q, Wei H, Gu H, Colorado HA, Zhang X, Wei S, Guo Z. Polypyrrole doped epoxy resin nanocomposites with enhanced mechanical properties and reduced flammability. J Mater Chem C. 2015;3:162.

    Article  CAS  Google Scholar 

  34. Attia NF, Afifi HA, Hassan MA. Synergistic study of carbon nanotubes, rice husk ash and flame retardant materials on the flammability of polystyrene nanocomposites. Mater Today Proc. 2015;2:3998.

    Article  Google Scholar 

  35. International standard IEC 60695-11-10, Fire hazard testing Part 11-10: test flames-50 W horizontal and vertical flame test methods.

  36. ISO 5660-1. Reaction-to-fire tests -heat release, smoke production and mass loss rate -part 1: heat release rate (cone calorimeter method) 2002.

  37. Cheng Q, Pablinek V, Li CZ, Lengalova A, He Y, Saha P. Synthesis and structural properties of polypyrrole/nano-Y2O3 conducting composite. Appl Surf Sci. 2006;253:1736.

    Article  CAS  Google Scholar 

  38. Yang X, Li L. Polypyrrole nanofibers synthesized via reactive template approach and their NH3 gas sensitivity. Synth Met. 2010;160:1365.

    Article  CAS  Google Scholar 

  39. Stejskal J, Trchovà M, Ananieva IA, Jaňca J, Prokeš J, Fedorova S, Sapurina I. Poly(aniline-co-pyrrole): powders, films, and colloids. Thermophoretic mobility of colloidal particles. Synth Met. 2004;146:29.

    Article  CAS  Google Scholar 

  40. Romero AJF, Cascales JJL, Otero F. In situ FTIR spectroscopy study of the break-in phenomenon observed for PPy/PVS films in acetonitrile. J Phys Chem B. 2005;109:21078.

    Article  Google Scholar 

  41. Tu J, Li N, Yuan Q, Wang R, Geng WC, Li Y, Zhang T, Li X. Humidity-sensitive property of Fe2+ doped polypyrrole. Synth Met. 2009;159:2469.

    Article  CAS  Google Scholar 

  42. Wang M, Liu WM, Tian J, Shao X, Sun DC. Structure characterization and conductive performance of polypyrrol-molybdenum disulfide intercalation materials. Polym Compos. 2004;25:111.

    Article  Google Scholar 

  43. Hassan MA, Kozlowski R, Obidzinski B. New fire-protective intumescent coatings for wood. J Appl Polym Sci. 2008;110:83.

    Article  CAS  Google Scholar 

  44. Sevilla M, Mokaya R, Fuertes AB. Ultrahigh surface area polypyrrole-based carbons with superior performance for hydrogen storage. Energy Environ Sci. 2011;4:2930.

    Article  CAS  Google Scholar 

  45. Levchik SV, Weil AED. A review of recent progress in phosphorus-based flame retardants. J Fire Sci. 2006;24:345.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nour Fathi Attia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attia, N.F. Organic nanoparticles as promising flame retardant materials for thermoplastic polymers. J Therm Anal Calorim 127, 2273–2282 (2017). https://doi.org/10.1007/s10973-016-5740-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5740-z

Keywords

Navigation