Skip to main content
Log in

Thermal decomposition kinetics of Mn0.9Co0.1HPO4·3H2O using experimental-model comparative and thermodynamic studies

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Simple direct precipitation was used to synthesize the single-phase Mn0.9Co0.1HPO4·3H2O compound. Two thermal decomposition steps were observed corresponding to the dehydration and polycondensation processes, respectively. The pure-phase Mn1.8Co0.2P2O7 compound was obtained as the final decomposition product. The thermogravimetry/differential thermogravimetry/differential thermal analysis, Fourier transform infrared, atomic absorption spectrophotometry, X-ray diffraction and scanning electron microscope techniques were used to characterize the synthesized compounds. The iterative Kissinger–Akahira–Sunose method was carried out to calculate the exact activation energy \(E_{\alpha }\) values. The first (overlapping between Regions I and II) and the final steps were confirmed to be single-step kinetic process with unique kinetic triplets. The experimental and model plots were compared to determine the reaction mechanisms. Regions I and II of the first step were found to be 3-D diffusion of spherical symmetry (\(D_{3}\)) and cylindrical symmetry (\(D_{4}\)) processes, respectively, while the final step was found to be an assumed random nucleation (\(A_{2}\)) process. Pre-exponential factors were calculated from \(E_{\upalpha}\) and reaction mechanism. The related thermodynamic functions of the transition state complexes were evaluated and found to agree well with the experimental data.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Silber A, Bar-Yosef B, Levkovitch I, Kautzky L, Minz D. Kinetics and mechanism of pH-dependent Mn(II) reactions in plant-growth medium. Soil Biol Biochem. 2008;401:2787–95.

    Article  Google Scholar 

  2. Jouini A, Gâcon JC, Ferid M, Trabelsi-Ayadi M. Luminescence and scintillation properties of praseodymium poly and diphosphates. Opt Mater. 2003;24:175–80.

    Article  CAS  Google Scholar 

  3. Hsiang H-I, Mei L-T, Lin Y-H. Formation and growth of manganese phosphate passivation layers for NTC ceramics. J Alloys Compd. 2009;48:723–8.

    Article  Google Scholar 

  4. Adam L, Guesdon A, Raveau B. Unique charge ordering of manganese in a new mixed valent phosphate K3Mn II3 MnIII(PO4)(H0.5PO4)2(HPO4)2. J Solid State Chem. 2009;182:2338–43.

    Article  CAS  Google Scholar 

  5. Feng D, Wang C, Cheng W, Li G, Tian S, Liao F, Xiong M, Lin J. Synthesis, crystal structure, and magnetic properties of K4Mn3(HPO4)4(H2PO4)2. Solid State Sci. 2009;1:845–51.

    Article  Google Scholar 

  6. Yuan A, Wu L, Bai S, Ma Z, Tong ZH. Standard molar enthalpies of formation for ammonium/3d-transition metal phosphates NH4MPO4·H2O (M = Mn2+, Co2+, Ni2+, Cu2+). J Chem Eng Data. 2008;53:1066–70.

    Article  CAS  Google Scholar 

  7. Jibril BY, Al-Zahrani SM, Abasaeed AE. Propane oxidative dehydrogenation over metal pyrophosphates catalysts. Catal Lett. 2001;74:145–8.

    Article  CAS  Google Scholar 

  8. Boonchom B. Kinetic and thermodynamic studies of MgHPO4 3H2O by non-isothermal decomposition data. J Therm Anal Calorim. 2009;98:863–71.

    Article  CAS  Google Scholar 

  9. Boonchom B, Danvirutai C. A simple synthesis and thermal decomposition kinetics of MnHPO4 H2O rod-like microparticles obtained by spontaneous precipitation route. J Optoelectron Adv Mater. 2008;10:492–9.

    CAS  Google Scholar 

  10. Brandová D, Trojan M, Arnold M, Paulik F, Paulik J. Mechanism of the dehydration of CoHPO4·1.5H2O. J Thermal Anal. 1988;34:673–8.

    Article  Google Scholar 

  11. Aramendίa MA, Borau V, Jiménez C, Marinas JM, Romero FJ. Synthesis and characterization of magnesium phosphates and their catalytic properties in the conversion of 2-hexanol. J Colloid Interface Sci. 1999;217:288–98.

    Article  Google Scholar 

  12. Boonchom B, Danvirutai C. Synthesis of MnNiP2O7 and nonisothermal decomposition kinetics of a new binary Mn0.5Ni0.5HPO4 H2O precursor obtained from a rapid coprecipitation at ambient temperature. Ind Eng Chem Res. 2008;47:5976–81.

    Article  CAS  Google Scholar 

  13. Boonchom B, Phuvongpha N. Synthesis of new binary cobalt iron pyrophosphate CoFeP2O7. Mater Lett. 2009;63:1709–11.

    Article  CAS  Google Scholar 

  14. Boonchom B, Vittayakorn N. Synthesis and ferromagnetic property of new binary copper iron pyrophosphate CuFeP2O7. Mater Lett. 2010;63:275–7.

    Article  Google Scholar 

  15. Huang Y-X, Prots Y, Kniep R. Crystal structure of cobalt manganese monoaqua catena-[monohydrogenborate-tris(hydrogenphosphate)], (Co0.6Mn0.4)2(H2O)[BP3O9(OH)4]. Z Kristallogr NCS. 2009;224:371–2.

    CAS  Google Scholar 

  16. Pang H, Wang S, Shao W, Zhao S, Yan B, Li X, Li S, Chen J, Du W. Few-layered CoHPO4 3H2O ultrathin nanosheets for high performance of electrode materials for supercapacitors. Nanoscale. 2013;5:5752–7.

    Article  CAS  Google Scholar 

  17. Baran J, Lis T, Ratajczak H. Structure and polarized IR spectra of the K2HPO4 3H2O crystal. J Mol Struct. 1989;195:159–74.

    Article  CAS  Google Scholar 

  18. Mizuno N, Hatayama H, Misono M. One-pot synthesis of VOHPO4 0.5H2O with high growth of the (001) plane: an important catalyst precursor of (VO)2P2O7. Chem Mater. 1997;9:2697–8.

    Article  CAS  Google Scholar 

  19. Boonchom B, Vittayakorn N. Simple fabrication of polyhedral grain-like microparticle Cu0.5Zn0.5HPO4 H2O and porous structure CuZnP2O7. Ceram Int. 2012;38:411–5.

    Article  CAS  Google Scholar 

  20. Šoptrajanov B, Stefov V, Kuzmanovskia I, Jovanovski G. Fourier transform infrared and Raman spectra of manganese hydrogenphosphate trihydrate. J Mol Struct. 1999;482–483:103–7.

    Article  Google Scholar 

  21. Sronsri C, Noisong P, Danvirutai C. Solid state reaction mechanisms of the LiMnPO4 formation using special function and thermodynamic studies. Ind Eng Chem Res. 2015;54:7083–93.

    Article  CAS  Google Scholar 

  22. Freeman ES, Carroll B. The application of thermoanalytical techniques to reaction kinetics. The thermogravimetric evaluation of the kinetics of the decomposition of calcium oxalatemonohydrate. J Phys Chem. 1958;62:394–7.

    Article  CAS  Google Scholar 

  23. Kissinger HE. Reaction kinetics in differential thermal analysis. J Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  24. Akahira T, Trans Sunose T. Joint convention of four electrical institutes, paper no. 246, 1969. Res Rep Chiba Inst Technol. 1971;16:22–31.

    Google Scholar 

  25. Ozawa TA. New method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  26. Flynn JH, Wall LA. A quick direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  27. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;20:68–9.

    Article  Google Scholar 

  28. Lozano R, Román J, Aviĺes JC, Moragues A, Jerez A, Ramos E. Thermal decomposition of molybdenum(IV) dialkyldithiocarbamates: application of a new method to kinetic studies. Transit Metal Chem. 1987;12:289–91.

    Article  CAS  Google Scholar 

  29. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  30. Málek J. The kinetic analysis of non-isothermal data. Thermochim Acta. 1992;200:257–69.

    Article  Google Scholar 

  31. Málek J. A computer program for kinetic analysis of non-isothermal thermoanalytical data. Thermochim Acta. 1989;138:337–46.

    Article  Google Scholar 

  32. Sronsri C, Noisong P, Danvirutai C. Synthesis, non-isothermal kinetic and thermodynamic studies of the formation of LiMnPO4 from NH4MnPO4 H2O precursor. Solid State Sci. 2014;32:67–75.

    Article  CAS  Google Scholar 

  33. Sronsri C, Noisong P, Danvirutai C. Isoconversional kinetic, mechanism and thermodynamic studies of the thermal decomposition of NH4Co0.8Zn0.1Mn0.1PO4·H2O. J Therm Anal Calorim. 2015;120:1689–701.

    Article  CAS  Google Scholar 

  34. Cullity BD. Elements of X-ray diffraction. 2nd ed. Boston: Addison-Wesley; 1978.

    Google Scholar 

  35. Duce C, Ciprioti SV, Ghezzi L, Ierardi V, Tinè MR. Thermal behavior study of pristine and modified halloysite nanotubes. J Therm Anal Calorim. 2015;121:1011–9.

    Article  CAS  Google Scholar 

  36. Ledeţi I, Vlase G, Vlase T, Fuliaş A. Kinetic analysis of solid-state degradation of pure pravastatin versus pharmaceutical formulation. J Therm Anal Calorim. 2015;121:1103–10.

    Article  Google Scholar 

  37. Shahcheraghi SH, Khayati GR, Ranjbar M. An advanced reaction model determination methodology in solid-state kinetics based on Arrhenius parameters variation Part III. Thermal desulfurization kinetic analysis of CuO·CuSO4. J Therm Anal Calorim. 2015. doi:10.1007/s10973-015-4853-0.

    Google Scholar 

  38. Gallo RC, Ferreira APG, Castro REA, Cavalheiro ETG. Studying the thermal decomposition of carvedilol by coupled TG-FTIR. J Therm Anal Calorim. 2015. doi:10.1007/s10973-015-4931-3.

    Google Scholar 

  39. Liu S-H, Shu C-M. Advanced technology of thermal decomposition for AMBN and ABVN by DSC and VSP2. J Therm Anal Calorim. 2015;121:533–40.

    Article  CAS  Google Scholar 

  40. Sato Y. Evaluation of the hazard of heat generation by oxidation of materials using a differential-type adiabatic calorimeter. J Therm Anal Calorim. 2015. doi:10.1007/s10973-015-4954-9.

    Google Scholar 

  41. Morancho JM, Fernández-Francos X, Ramis X, Salla JM, Serra À. Photocuring and thermal post-curing of a cycloaliphatic epoxide resin with a trithiol and a vinyl epoxy compound. J Therm Anal Calorim. 2015;121:389–95.

    Article  CAS  Google Scholar 

  42. Wang X, Dang L, Zhu G, Wei H. Stability and dehydration kinetics of the monohydrate racemic tartaric acid. J Therm Anal Calorim. 2015. doi:10.1007/s10973-015-4699-5.

    Google Scholar 

  43. Chai Q, Chen Z, Liao S, He Y, Li Y, Wu W, Li B. Preparation of LiZn0.9PO4:Mn0.1·H2O via a simple and novel method and its non-isothermal kinetics using iso-conversional calculation procedure. Thermochim Acta. 2012;533:74–80.

    Article  CAS  Google Scholar 

  44. Genieva SD, Vlaev LT, Atanassov AN. Study of the thermooxidative degradation kinetics of poly(tetrafluoroethene) using iso-conversional calculation procedure. J Therm Anal Calorim. 2010;99:551–61.

    Article  CAS  Google Scholar 

  45. Chrissafis K, Paraskevopoulos KM, Papageorgiou GZ, Bikiaris DN. Thermal decomposition of poly(propylene sebacate) and poly(propylene azelate) biodegradable polyesters: evaluation of mechanisms using TGA, FTIR and GS/MS. J Anal Appl Pyrolysis. 2011;92:123–30.

    Article  CAS  Google Scholar 

  46. Pérez-Maqueda LA, Criado JM. The accuracy of Senum and Yang’s approximations to the Arrhenius integral. J Therm Anal Calorim. 2000;60:909–15.

    Article  Google Scholar 

  47. Vlaev LT, Georgieva VG, Genieva SD. Products and kinetics of non-isothermal decomposition of vanadium(IV) oxide compounds. J Therm Anal Calorim. 2007;88:805–12.

    Article  CAS  Google Scholar 

  48. Jiang H, Wang JG, Wu SQ, Wang BS, Wang ZZ. Pyrolysis kinetics of phenol-formaldehyde resin by non-isothermal thermogravimetry. Carbon. 2010;48:352–8.

    Article  CAS  Google Scholar 

  49. Lu T, Arash T, Jianglong Y. An experimental study on thermal decomposition behavior of magnesite. J Therm Anal Calorim. 2014;118:1577–84.

    Article  Google Scholar 

  50. Mohammad TT, Nazanin Y, Mostafa R. Kinetic analysis of the complex process of poly(vinyl alcohol) pyrolysis using a new coupled peak deconvolution method. J Therm Anal Calorim. 2014;118:1733–46.

    Article  Google Scholar 

  51. Fanglong Z, Qianqian F, Yanfang X, Rangtong L, Kejing L. Kinetics of pyrolysis of ramie fabric wastes from thermogravimetric data. J Therm Anal Calorim. 2015;119:651–7.

    Article  Google Scholar 

  52. Ying L, Yu-Tong J, Tong-Lai Z, Chang-Gen F, Li Y. Thermal kinetic performance and storage life analysis of a series of high-energy and green energetic materials. J Therm Anal Calorim. 2015;119:659–70.

    Article  Google Scholar 

  53. Zhao SF, Zhang GP, Sun R, Wong CP. Curing kinetics, mechanism and chemorheological behavior of methanol etherified amino/novolac epoxy systems. Express Polym Lett. 2014;8:95–106.

    Article  Google Scholar 

  54. Janković B, Mentus S, Jelić D. A kinetic study of non-isothermal decomposition process of anhydrous nickel nitrate under air atmosphere. Phys B. 2009;404:2263–9.

    Article  Google Scholar 

  55. Boonchom B. Kinetics and thermodynamic properties of the thermal decomposition of manganese dihydrogenphosphate dehydrate. J Chem Eng Data. 2008;53:1533–8.

    Article  CAS  Google Scholar 

  56. Gao X, Dollimore D. The thermal decomposition of oxalates: part 26. A kinetic study of the thermal decomposition of manganese(II) oxalate dehydrate. Thermochim Acta. 1993;215:47–63.

    Article  CAS  Google Scholar 

  57. Rooney JJ. Eyring transition-state theory and kinetics in catalysis. J Mol Catal A Chem. 1995;96:L1–3.

    Article  CAS  Google Scholar 

  58. Noisong P, Danvirutai C. Kinetics and mechanism of thermal dehydration of KMnPO4·H2O in nitrogen atmosphere. Ind Eng Chem Res. 2010;49:3146–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Materials Chemistry Research Center, Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Khon Kaen University. The support from National Research University Project through Advanced Functional Material Research Cluster, Khon Kaen University, Office of the Higher Education, is also highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanaiporn Danvirutai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sronsri, C., Noisong, P. & Danvirutai, C. Thermal decomposition kinetics of Mn0.9Co0.1HPO4·3H2O using experimental-model comparative and thermodynamic studies. J Therm Anal Calorim 127, 1983–1994 (2017). https://doi.org/10.1007/s10973-016-5720-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5720-3

Keywords

Navigation