Journal of Thermal Analysis and Calorimetry

, Volume 125, Issue 3, pp 1387–1398 | Cite as

Glass transition and hydration properties of polyhydroxyethylmethacrylate filled with modified silica nanoparticles

  • Yuliia Bolbukh
  • Panagiotis Klonos
  • Konstantinos Roumpos
  • Vasileia Chatzidogiannaki
  • Valentin Tertykh
  • Polycarpos Pissis
Article

Abstract

Effects of the filling degree of nanodispersed silica functionalized with amino or vinylsilyl groups on polymerization of 2-hydroxyethylmethacrylate (HEMA) and on structural characteristics of the filled composites have been studied using DSC, FTIR spectroscopy and equilibrium water sorption techniques. The results obtained testify that the kinetics of surface reaction as well as the structure of the boundary layer has more significant effect on composite structure than mechanical strengthening realized by the increase in filling degree. Merging the results of thermal analysis with data on the sorption capacity suggests the formation in filled polymer of pseudo-crystalline structures in condition of cohesion energy reduced, and this process does not depend strongly on filling degree. In the case of vinyl-silica, chemical bonding of monomer HEMA to surface that isolated nanoparticles can be niggled structuring effect of filler as reinforcing material. With increasing the filling degree of polymer with silica-amino, the nature of the polymer–silica interaction changes, with highest cohesive energy for the composite with filler content around 3 mass%. It was found that samples characterized by lowest cohesive energy have lowest moisture loss during desorption.

Keywords

DSC-study 2-Hydroxyethylmethacrylate (HEMA) Aminated silica Vinylsilylated silica Filling degree Composite structure Hydration 

References

  1. 1.
    Bolbukh Y, Mamunya YP, Tertykh VA. Thermomechanical investigation of composites based on 2-hydroxyethylmethacrylate and high disperse initial and modified silica. J Therm Anal Calorim. 2005;81:15–21.CrossRefGoogle Scholar
  2. 2.
    Tsarevsky NV, Min K, Jahed NM, Gao H, Matyjaszewski K. Functional degradable polymeric materials prepared by atom transfer radical polymerization. Degrad Polym Mater ACS Symp Ser. 2006;939:184–200.CrossRefGoogle Scholar
  3. 3.
    Costantini A, Luciani G, Annunziata G, Silvestri B, Branda F. Swelling properties and bioactivity of silica gel/pHEMA Nanocomposites. J Mater Sci Mater Med. 2006;17:319–25.CrossRefGoogle Scholar
  4. 4.
    Bajpai AK, Shrivastava MJ. Water sorption dynamics of a binary copolymeric hydrogel of 2-hydroxyethyl methacrylate (HEMA). Biomater Sci Polym Edn. 2002;13:237–56.CrossRefGoogle Scholar
  5. 5.
    Montheard JP, Chatzopoulos M, Chappard D. 2-Hydroxyethyl methacrylate (HEMA): chemical properties and applications in biomedical fields. J Macrom Sci C Polym Rev. 1992;32:1–34.CrossRefGoogle Scholar
  6. 6.
    Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1997;74(7):1487.CrossRefGoogle Scholar
  7. 7.
    Tertykh V, Bolbukh Y, Yanishpolskii V. Effect of unmodified and surface treated fumed silica on the polymerization of HEMA. Macromol Symp. 2005;221(1):145–52.CrossRefGoogle Scholar
  8. 8.
    Privalko VP, Shumsky VF, Privalko EG, Karaman VM, Walter R, Friedrich K, Zhang MQ, Rong MZ. Viscoelasticity and flow behaviour of irradiation grafted nano-inorganic particle filled polypropylene composites in the melt state. J Mater Proc Technol. 2003;137:208–13.CrossRefGoogle Scholar
  9. 9.
    Bolbukh Y, Tertykh V, Klonos P, Pissis P. DSC-study of polyhydroxyethylmethacrylate filled with modified silicas. J Therm Anal Calorim. 2012;108:1111.CrossRefGoogle Scholar
  10. 10.
    Bolbukh YN, Tertykh VA, Gawdzik B. TGA and DSC studies of filled porous copolymers. J Therm Anal Calorim. 2006;86:125–32.CrossRefGoogle Scholar
  11. 11.
    Kashi TSJ, Erfan M, Watts DC. Effect of water on HEMA conversion by FT-IR spectroscopy. J Dent. 2007;4(3):123–9.Google Scholar
  12. 12.
    Alvarez VA, Pérez CJ. Effect of different inorganic filler over isothermal and non-isothermal crystallization of polypropylene homopolymer. J Therm Anal. 2011. doi:10.1007/s10973-011-1705-4.Google Scholar
  13. 13.
    Guar MS, Rathore BS, Singh PK, Indolia A, Awasthi AM, Bhardwaj S. Thermally stimulated current and differential scanning calorimetry spectroscopy for the study of polymer nanocomposites. J Appl Polym Sci. 2010;101:315–21.Google Scholar
  14. 14.
    Yanchevsky LK, Levandovsky VV. Determination of the parameters of the relaxation spectrum of polymers from the result of calorimetric measurement. Acta Polym. 1993;44:20–30.CrossRefGoogle Scholar
  15. 15.
    Lipatov YS. Kosyanchuk LV, Nesterov AE, Antonenk OI. Filler effect on polymerization kinetics and phase separation in polymer blends formed in situ. Polym Int. 2003;52:664–9.CrossRefGoogle Scholar
  16. 16.
    Lam R, Geil PH. Amorphous linear polyethylene: annealing effects. J Macromol Sci B Phys. 1981;20(1):37–58.CrossRefGoogle Scholar
  17. 17.
    Bernshteine VA, Egorov BM, editors. Differential scanning calorimetry in physics-chemistry of polymers. Leningrad: Khimia; 1990. 256 p.Google Scholar
  18. 18.
    Yanchevsky LK, Levandovsky VV. Determination of the parameters of the relaxation spectrum of polymers from the results of calorimetric measurements. Acta Polym. 1993;44:29–30.CrossRefGoogle Scholar
  19. 19.
    Varma IK, Patnaik S. Determination of cohesive energy densities of 2-hydroxyethylmethacrylate and methylacrylate copolymers from swelling measurements. Die Angeivuridte Mukromolekulure Chernie. 1976;55:109–16.CrossRefGoogle Scholar
  20. 20.
    Ferreira L, Vidal MM, Gil MH. Evaluation of poly(2-hydroxyethyl methacrylate) gels as drug delivery systems at different pH values. Int J Pharm. 2000;194:169–80.CrossRefGoogle Scholar
  21. 21.
    Bajpai AK, Shrivastava MJ. Water sorption dynamics of a binary copolymeric hydrogel of 2-hydroxyethyl methacrylate (HEMA). Biomater Sci Polym Edn. 2002;13:237–56.CrossRefGoogle Scholar
  22. 22.
    Shariff RM, The study of adsorption and desorption of picloram on six agricultural soils. J Univ Anbar Pure Sci 2009;3(3): ISSN: 1991-8941.Google Scholar
  23. 23.
    Kwok AY, Qiao GG, Solomon DH. Synthetic hydrogels 3. Solvent effects on poly(2-hydroxyethyl methacrylate) networks. Polymer. 2004;45:4017–27.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Yuliia Bolbukh
    • 1
  • Panagiotis Klonos
    • 2
  • Konstantinos Roumpos
    • 2
  • Vasileia Chatzidogiannaki
    • 2
  • Valentin Tertykh
    • 1
  • Polycarpos Pissis
    • 2
  1. 1.Chuiko Institute of Surface Chemistry of NAS UkraineKievUkraine
  2. 2.National Technical University of AthensAthensGreece

Personalised recommendations