Skip to main content
Log in

Oxidation of carbon deposits on anode material Ni–YSZ in solid oxide fuel cells

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Solid oxide fuel cells (SOFCs) are electrochemical devices that convert the chemical energy of fuels directly into electricity with high conversion efficiency. A major advantage of SOFC systems compared to low-temperature fuel cells is that SOFCs can use humidified hydrocarbons as fuel. However, the use of hydrocarbons may lead to an undesirable carbon deposition as hydrocarbons are oxidized at the anode side in SOFCs. Such carbon deposits on the nickel–yttrium stabilized zirconia (Ni–YSZ) anode material are the most probable mode of deactivation of SOFCs. Therefore, commercially available NiO–YSZ anode material for high-temperature fuel cells was activated by a temperature-programmed reduction in a hydrogen atmosphere. In the next step, carbon was deliberately deposited on the reduced samples by isothermal deposition in a methane–argon atmosphere. The carbon deposits were then burned off with a temperature-programmed oxidation (TPO) in an oxygen–argon atmosphere at different heating rates using thermo-analytical equipment. The TPO was followed by TG, DTG, DTA and QMS measurements. The easiest way to distinguish among various types of deposited carbon was to follow the QMS curves. The obtained QMS curves were processed with Netzsch Peak Separation software in order to extract several peaks corresponding to various forms of carbon deposits. It was found that high amorphous and low amorphous carbon are burned off at relatively low temperatures (up to 650 °C), fibrous carbon is oxidized up to 750 °C, graphite is burned out up to 830 °C and finally, carbon diluted in nickel leaves the system in the 900–1000 °C range, depending on the oxidizing conditions. The isoconversional method was used to calculate activation energies of various carbon oxidation processes. The absolute values of the activation energies increase from amorphous carbon via fibrous carbon to graphite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shaikh SPS, Muchtar A, Somalu MR. A review on the selection of anode materials for solid-oxide fuel cells. Renew Sustain Energy Rev. 2015;. doi:10.1016/j.rser.2015.05.069.

    Google Scholar 

  2. Shri Prakash B, Senthil Kumar S, Aruna ST. Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: a review. Renew Sustain Energy Rev. 2014;. doi:10.1016/j.rser.2014.04.043.

    Google Scholar 

  3. Guerra C, Lanzini A, Leone P, Santarelli M, Brandon NP. Optimization of dry reforming of methane over Ni/YSZ anodes for solid oxide fuel cells. J Power Sources. 2014;. doi:10.1016/j.jpowsour.2013.06.088.

    Google Scholar 

  4. Khan MS, Lee SB, Song RH, Lee JW, Lim TH, Park SJ. Fundamental mechanisms involved in the degradation of nickel–yttria stabilized zirconia(Ni–YSZ) anode during solid oxide fuel cells operation: A review. Ceram Int. 2016;. doi:10.1016/j.ceramint.2015.09.006.

    Google Scholar 

  5. Drozd E, Stachura M, Wyrwa J, Rekas M. Effect of the addition of pore former. J Therm Anal Calorim. 2015;. doi:10.1007/s10973-015-4693-y.

    Google Scholar 

  6. Drozd-Ciesla E, Wyrwa J, Rekas M. Properties of Ni/YSZ cermet materials with addition of Al2O3. J Therm Anal Calorim. 2013;. doi:10.1007/s10973-013-3167-3.

    Google Scholar 

  7. Bartholomew C. Mechanism of catalytic deactivation. Appl Catal A. 2001;. doi:10.1016/S0926-860X(00)00843-7.

    Google Scholar 

  8. Kuhn J, Kesler O. Carbon deposition thresholds on nickel-based solid oxide fuel cell anodes I. Fuel utilization. J Power Sources. 2015;. doi:10.1016/j.jpowsour.2014.07.085.

    Google Scholar 

  9. Finnerty CM, Coe NJ, Cunningham RH, Ormerod RM. Carbon formation on and deactivation of Ni-Based/zirconia anodes in solid oxide fuel cells running on methane. Catal Today. 1998;. doi:10.1016/S0920-5861(98)00335-6.

    Google Scholar 

  10. Triantafyllopoulos NC, Neophytides SG. The nature and binding strength of carbon adspecies formed during the equilibrium dissociative adsorption of CH4 on Ni–YSZ cermet catalysis. J Catal. 2003;. doi:10.1016/S0021-9517(03)00062-9.

    Google Scholar 

  11. Novosel B, Marinšek M, Maček J. Deactivation of Ni–YSZ material in dry methane and oxidation of various form of deposited carbon. J Fuel Cell Sci Technol. 2012;. doi:10.1115/1.4007272.

    Google Scholar 

  12. Xiao J, Xie Y, Liu J, Liu M. Deactivation of nickel-based anode in solid oxide fuel cells operated on carbon-containing fuels. J Power Sources. 2014;. doi:10.1016/j.jpowsour.2014.06.082.

    Google Scholar 

  13. Gorte RJ, Vohs JM. Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons. J Catal. 2003;. doi:10.1002/chin.200341292.

    Google Scholar 

  14. Ke K, Gunji A, Mori H, Tsuchida S, Takahashi H, Ukai K, Mizutani Y, Sumi H, Yokoyama M, Waki K. Effect of oxide on carbon deposition behavior of CH4 fuel on Ni/ScSZ cermet anode in high temperature SOFCs. Sol State Ion. 2006;. doi:10.1016/j.ssi.2005.12.009.

    Google Scholar 

  15. Kharlamova T, Pavlova S, Sadykov V, Krieger T, Alikina G, Argirusis C. Catalytic properties and coking stability of new anode materials for internal methane reforming in the intermediate temperature solid oxide fuel cells. Catal Today. 2009;. doi:10.1016/j.cattod.2009.01.052.

    Google Scholar 

  16. Mermelstein J, Millan M, Brandon N. The impact of steam and current density on carbon formation from biomass gasification tar on Ni/YSZ, and Ni/CGO solid oxide fuel cell anodes. J Power Sources. 2010;. doi:10.1016/j.jpowsour.2009.09.046.

    Google Scholar 

  17. Takeguchi T, Kani Y, Yano T, Kikuchi R, Eguchi K, Tsujimoto K, Uchida Y, Ueno A, Omoshiki K, Aizawa M. Study on steam reforming of CH4 and C2 hydrocarbons and carbon deposition on Ni–YSZ cermets. J Power Sources. 2002;. doi:10.1016/S0378-7753(02)00471-8.

    Google Scholar 

  18. Bellido JDA, De Souza JE, M’Peko JC, Assaf EM. Effect of adding CaO to ZrO2 support on nickel catalyst activity in dry reforming of methane. Appl Catal A Gen. 2009;. doi:10.1016/j.apcata.2009.02.014.

    Google Scholar 

  19. Rostrup-Nielsen JR. Industrial relevance of coking. Catal Today. 1997;. doi:10.1016/S0920-5861(97)00016-3.

    Google Scholar 

  20. Marinšek M. Ni–YSZ substrate degradation during carbon deposition. Bol Soc Esp Ceram. 2011;. doi:10.3989/cyv.182011.

    Google Scholar 

  21. Llobet S, Pinilla JL, Moliner R, Suelves I. Relationship between carbon morphology and catalyst deactivation in the catalytic decomposition of biogas using Ni, Co and Fe based catalysts. Fuel. 2015;. doi:10.1016/j.fuel.2014.08.031.

    Google Scholar 

  22. Helveg S, Lolez-Cartes C, Sehested J, Jansen PL, Clausen BC, Rostrup-Nielsen JR, Abild-Pedersen F, Nørskov JK. Atomic-scale imaging of carbon nanofibre growth. Nature. 2004;. doi:10.1038/nature02278.

    Google Scholar 

  23. Klinke C, Bonard JM, Kern K. Thermodynamic calculations on the catalytic growth of multiwall carbon nanotubes. Phys Rev B. 2005;. doi:10.1103/PhysRevB.71.035403.

    Google Scholar 

  24. Bernardo CA, Lobo LS. Kinetics of carbon formation from acetylene on nickel. J Catal. 1975;. doi:10.1016/0008-6223(76)90132-9.

    Google Scholar 

  25. Abild-Pedersen F, Nørskov JK. Mechanism of catalytic carbon nanofiber growth studied by initio density functional theory calculations. Phys Rev B. 2006;. doi:10.1103/PhysRevB.73.115419.

    Google Scholar 

  26. Zhu YA, Dai YC, Chen D, Yuan WK. First-principles study of carbon diffusion in bulk nickel during the growth of fishbone-type carbon nanofibers. Carbon. 2007;. doi:10.1016/j.carbon.2006.08.015.

    Google Scholar 

  27. Baker RTK. Catalytic growth of carbon filaments. Carbon. 1989;. doi:10.1016/0008-6223(89)90062-6.

    Google Scholar 

  28. Robertson J. Growth of nanotubes for electronics. Mater Today. 2007;. doi:10.1016/S1369-7021(06)71790-4.

    Google Scholar 

  29. Krijn P, Geus JW. Carbon nanofibers: catalytic synthesis and applications. Catal Rev. 2000;. doi:10.1081/CR-100101954.

    Google Scholar 

  30. Rakass S, Oudghiri-Hassani H, Rowntree P, Abatzoglou N. Steam reforming of methane over unsupported nickel catalysts. J Power Sources. 2005;. doi:10.1016/j.jpowsour.2005.09.019.

    Google Scholar 

  31. Van Doorn J, Verheul RCS, Singoredjo L, Moulijn JA. Characterization of carbon deposits on alumina supported cobalt and nickel by temperature programmed gasification with O2, CO2 and H2. Fuel. 1986;. doi:10.1016/0016-2361(86)90109-2.

    Google Scholar 

  32. Finnerty CM. Internal reforming over nickel/zirconia anodes in SOFC operating on methane: influence of anode formulation, pre-treatment and operating conditions. J Power Sources. 2000;. doi:10.1016/S0378-7753(99)00498-X.

    Google Scholar 

  33. Ferrari AC, Robertson J. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. R Soc. 2004;. doi:10.1098/rsta.2004.1452.

    Google Scholar 

  34. Guisard Restivo TA, Mello-Castanho SRH, Tenorio JA. TG/DTA-MS evaluation of methane cracking and cooking on doped nickel-zirconia based cermets. J Therm Anal Calorim. 2014;. doi:10.1007/s10973-014-4003-0.

    Google Scholar 

  35. Arico E, Tabuti F, Fonseca FC, de Florio DZ, Ferlauto AS. Carbothermal reduction of the YSZ–NiO solid oxide fuel cell anode precursor by carbon-based materials. J Therm Anal Calorim. 2009;. doi:10.1007/s10973-009-0248-4.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Slovenian Research Agency [programme P1-0175(C)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjan Marinšek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skalar, T., Jelen, E., Novosel, B. et al. Oxidation of carbon deposits on anode material Ni–YSZ in solid oxide fuel cells. J Therm Anal Calorim 127, 265–271 (2017). https://doi.org/10.1007/s10973-016-5671-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5671-8

Keywords

Navigation