Journal of Thermal Analysis and Calorimetry

, Volume 127, Issue 2, pp 1683–1691

Compatibility study between ferulic acid and excipients used in cosmetic formulations by TG/DTG, DSC and FTIR

  • Gilberto Silva Nunes Bezerra
  • Maxciara Agda Vicente Pereira
  • Elissa Arantes Ostrosky
  • Euzébio Guimarães Barbosa
  • Maria de Fátima Vitória de Moura
  • Marcio Ferrari
  • Cícero Flávio Soares Aragão
  • Ana Paula Barreto Gomes
Article
  • 293 Downloads

Abstract

Ferulic acid (4-hydroxy-3-methoxycinnamic acid) is a phytochemical constituent from the polyphenols group commonly found in whole grains, spinach, parsley, grapes and rhubarb. It has been widely applied in skin care formulations as photoprotective agent and delayer of cutaneous photoaging processes. This work aims to establish a protocol to the development of cosmetic formulations using thermoanalytical techniques (TG/DTG and DSC) and Pearson’s correlation by FTIR data, in order to evaluate the compatibility between ferulic acid and excipients used in skin care formulations. The results obtained from the thermoanalytical techniques indicated compatibility between ferulic acid and the following excipients: passion fruit seed oil, Carbopol® Ultrez 30, EDTA, Crodabase CR2®, Crodamol™ GTCC and Dow Corning® RM 2051. Nevertheless, the analysis also demonstrated the possibility of some interaction between ferulic acid and the following excipients: glyceryl stearate, Rapithix® A-60 and Optiphen®. To validate these results, it was demonstrated by Pearson’s correlation that passion fruit seed oil, Carbopol® Ultrez 30, EDTA, Crodabase CR2®, Crodamol™ GTCC, Dow Corning® RM 2051, glyceryl stearate and Rapithix® A-60 do not have any incompatibility that may compromise ferulic acid properties. Finally, it was also proved a meaningful incompatibility between ferulic acid and Optiphen® using Pearson’s correlation. Thus, it is not recommended to use Optiphen® in the development of cosmetic formulations to carry ferulic acid.

Keywords

Compatibility study Cosmetic formulation Ferulic acid FTIR Thermoanalytical techniques 

References

  1. 1.
    Gómez-Caravaca AM, Verardo V, Segura-Carretero A, Fernández-Gutiérrez A, Caboni MF. Phenolic compounds and saponins in plants grown under different irrigation regimes. In: Watson RR, editor. Polyphenols in plants: isolation, purification and extract preparation. USA: Elsevier; 2014.Google Scholar
  2. 2.
    Graf J. Antioxidants and skin care: the essentials. Plast Reconstr Surg. 2010;125(1):378–83.CrossRefGoogle Scholar
  3. 3.
    Baskaran N, Manoharan S, Balakrishnan S, Pugalendhi P. Chemopreventive potential of ferulic acid in 7,12-dimethylbenz[a]anthracene-induced mammary carcinogenesis in Sprague-Dawley rats. Eur J Pharmacol. 2010;637(1–3):22–9.CrossRefGoogle Scholar
  4. 4.
    Choi YE, Park E. Ferulic acid in combination with PARP inhibitor sensitizes breast cancer cells as chemotherapeutic strategy. Biochem Biophys Res Commun. 2015;458(3):520–4.CrossRefGoogle Scholar
  5. 5.
    Jose Merlin JP, Venkadesh B, Hussain R, Rajan SS. Biochemical estimations of multidrug resistance (ferulic acid and paclitaxel) in non-small cells lung carcinoma cells in vitro. Biomed Aging Pathol. 2013;3(2):47–50.CrossRefGoogle Scholar
  6. 6.
    Kawabata K, Yamamoto T, Hara A, Shimizu M, Yamada Y, Matsunaga K, Tanaka T, Mori H. Modifying effects of ferulic acid on azoxymethane-induced colon carcinogenesis in F344 rats. Cancer Lett. 2000;157(1):15–21.CrossRefGoogle Scholar
  7. 7.
    Alias LM, Manoharan S, Vellaichamy L, Balakrishnan S, Ramachandran CR. Protective effect of ferulic acid on 7,12-dimethylbenz[a]anthracene-induced skin carcinogenesis in Swiss albino mice. Exp Toxicol Pathol. 2009;61(3):205–14.CrossRefGoogle Scholar
  8. 8.
    Ramar M, Manikandan B, Raman T, Priyadarsini A, Palanisamy S, Velayudam M, Munusamy A, Prabhu NM, Vaseeharan B. Protective effect of ferulic acid and resveratrol against alloxan-induced diabetes in mice. Eur J Pharmacol. 2012;690(1–3):226–35.CrossRefGoogle Scholar
  9. 9.
    Yan J-J, Cho J-Y, Kim H-S, Kim K-L, Jung J-S, Huh S-O, Suh H-W, Kim Y-H, Song D-K. Protection against beta-amyloid peptide toxicity in vivo with long-term administration of ferulic acid. Br J Pharmacol. 2001;133(1):89–96.CrossRefGoogle Scholar
  10. 10.
    Yabe T, Hirahara H, Harada N, Ito N, Nagai T, Sanagi T, Yamada H. Ferulic acid induces neural progenitor cell proliferation in vitro and in vivo. Neuroscience. 2010;165(2):515–24.CrossRefGoogle Scholar
  11. 11.
    Ou S, Kwok K-C. Ferulic acid: pharmaceutical functions, preparation and applications in foods. J Sci Food Agric. 2004;84(11):1261–9.CrossRefGoogle Scholar
  12. 12.
    Srinivasan M, Sudheer AR, Menon VP. Ferulic acid: therapeutic potential through its antioxidant property. J Clin Biochem Nutr. 2007;40(2):92–100.CrossRefGoogle Scholar
  13. 13.
    Lin F-H, Lin J-Y, Gupta RD, Tournas JA, Burch JA, Selim MA, Monteiro-Riviere NA, Grichnik JM, Zielinski J, Pinnell SR. Ferulic acid stabilizes a solution of vitamins C and E and doubles its photoprotection of skin. J Invest Dermatol. 2005;125(4):826–32.CrossRefGoogle Scholar
  14. 14.
    Zhang L-W, Al-Suwayeh SA, Hsieh P-W, Fang J-Y. A comparison of skin delivery of ferulic acid and its derivatives: evaluation of their efficacy and safety. Int J Pharm. 2010;399(1–2):44–51.CrossRefGoogle Scholar
  15. 15.
    Lima ÍPB, Lima NGPB, Barros DMC, Oliveira TS, Mendonça CMS, Barbosa EG, Raffin FM, Moura TFAL, Gomes APB, Ferrari M, Aragão CFS. Compatibility study between hydroquinone and the excipients used in semi-solid pharmaceutical forms by thermal and non-thermal techniques. J Therm Anal Calorim. 2014;120(1):719–32.CrossRefGoogle Scholar
  16. 16.
    Daniel JSP, Veronez IP, Rodrigues LL, Trevisana MG, Garcia JS. Risperidone—solid-state characterization and pharmaceutical compatibility using thermal and non-thermal techniques. Thermochim Acta. 2013;568:148–55.CrossRefGoogle Scholar
  17. 17.
    Veronez IP, Daniel JSP, Garcia JS, Trevisan MG. Characterization and compatibility study of desloratadine. J Therm Anal Calorim. 2014;115:2407–14.CrossRefGoogle Scholar
  18. 18.
    Bernardi LS, Oliveira PR, Murakami FS, Silva MAS, Borgmann SHM, Cardoso SG. Characterization of venlafaxine hydrochloride and compatibility studies with pharmaceutical excipients. J Therm Anal Calorim. 2009;97:729–33.CrossRefGoogle Scholar
  19. 19.
    Sohn YT, Oh JH. Characterization of physicochemical properties of ferulic acid. Arch Pharm Res. 2003;26(12):1002–8.CrossRefGoogle Scholar
  20. 20.
    Lira AM, Araújo AAS, Basílio IDJ, Santos BLL, Santana DP, Macedo RO. Compatibility studies of lapachol with pharmaceutical excipients for the development of topical formulations. Thermochim Acta. 2007;457(1–2):1–6.CrossRefGoogle Scholar
  21. 21.
    Moyano MA, Broussalis AM, Segall AI. Thermal analysis of lipoic acid and evaluation of the compatibility with excipients. J Therm Anal Calorim. 2010;99(2):631–7.CrossRefGoogle Scholar
  22. 22.
    Silva EP, Pereira MAV, Lima IPB, Lima NGPB, Barbosa EG, Aragão CFS, Gomes APB. Compatibility study between atorvastatin and excipients using DSC and FTIR. J Therm Anal Calorim. 2016;123(2):933–9.CrossRefGoogle Scholar
  23. 23.
    Pereira MAV, Fonseca GD, Silva-Júnior AA, Pedrosa MF, Moura MFV, Barbosa EG, Gomes APB, Santos KSCR. Compatibility study between chitosan and pharmaceutical excipients used in solid dosage forms. J Therm Anal Calorim. 2014;116:1091–100.CrossRefGoogle Scholar
  24. 24.
    Kumar V, Shah RP, Malik S, Singh S. Compatibility of atenolol with excipients: lC–MS/TOF characterization of degradation/interaction products, and mechanisms of their formation. J Pharm Biomed Anal. 2009;49:880–8.CrossRefGoogle Scholar
  25. 25.
    Roumeli J, Tsiaprantab A, Kachrimanisb K, Bikiarisc D, Chrissafis K. Physicochemical characterization and decomposition kinetics of trandolapril. Thermochim Acta. 2012;539:92–9.CrossRefGoogle Scholar
  26. 26.
    Julio TA, Zâmara IF, Garcia JS, Trevisan MG. Compatibility of sildenafil citrate and pharmaceutical excipients by thermal analysis and LC–UV. J Therm Anal Calorim. 2013;111:2037–44.CrossRefGoogle Scholar
  27. 27.
    Pani NR, Nath LK, Acharya S, Bhuniya B. Application of DSC, IST, and FTIR study in the compatibility testing of nateglinide with different pharmaceutical excipients. J Therm Anal Calorim. 2012;108:219–26.CrossRefGoogle Scholar
  28. 28.
    Liltorp K, Larsen TG, Willumsen B, Holm R. Solid state compatibility studies with tablet excipients using non thermal methods. J Pharm Biomed Anal. 2011;55:424–8.CrossRefGoogle Scholar
  29. 29.
    Tita B, Fulias A, Bandur G, Marian E, Tita D. Compatibility study between ketoprofen and pharmaceutical excipients used in solid dosage forms. J Pharm Biomed Anal. 2011;56:221–7.CrossRefGoogle Scholar
  30. 30.
    Peres-Filho MJ, Gaeti MPN, Oliveira SR, Marreto RN, Lima EM. Thermoanalytical investigation of olanzapine compatibility with excipients used in solid oral dosage forms. J Therm Anal Calorim. 2011;104:255–60.CrossRefGoogle Scholar
  31. 31.
    The Japanese Pharmacopeia. Pharmaceutical and medical devices agency. XVI ed. Tokyo: Ministry of Health, Labour and Welfare; 2012.Google Scholar
  32. 32.
    Fiddler W, Parker WE, Wasserman AE, Doerr RC. Thermal decomposition of ferulic acid. J Agric Food Chem. 1967;15(5):757–61.CrossRefGoogle Scholar
  33. 33.
    Croda. Crodabase CR-2. In: Material safety data sheets. Croda International. 2016. https://msds.crodadirect.com. Accessed 21 Jan 2016.
  34. 34.
    Rowe RC, Sheskey PJ, Quinn ME. Handbook of pharmaceutical excipients. 6th ed. London, Washington, DC: Pharmaceutical Press and American Pharmacists Association; 2009Google Scholar
  35. 35.
    Ashland. Safety data sheet. In: RapiThix™ polymers. Ashland. 2016. http://www.ashland.com/products/rapithix-polymers. Accessed 21 Jan 2016.
  36. 36.
    Calheiros R, Borges F, Marques MPM. Conformational behaviour of biologically active ferulic acid derivatives. J Mol Struct Theochem. 2009;913(1–3):146–56.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Gilberto Silva Nunes Bezerra
    • 1
  • Maxciara Agda Vicente Pereira
    • 1
  • Elissa Arantes Ostrosky
    • 1
  • Euzébio Guimarães Barbosa
    • 1
  • Maria de Fátima Vitória de Moura
    • 2
  • Marcio Ferrari
    • 1
  • Cícero Flávio Soares Aragão
    • 1
  • Ana Paula Barreto Gomes
    • 1
  1. 1.Pharmaceutical Sciences DepartmentFederal University of Rio Grande do Norte – UFRNNatalBrazil
  2. 2.Institute of ChemistryFederal University of Rio Grande do Norte – UFRNNatalBrazil

Personalised recommendations