The application of high-temperature X-ray diffraction and infrared emission spectroscopy to the thermal decomposition of kröhnkite


High-temperature X-ray diffraction and infrared emission spectroscopy have been applied to measure the thermal stability of the sulphate mineral kröhnkite Na2Cu(SO4)2·2H2O. Kröhnkite shows a low thermal stability. The mineral decomposes into a complex mixture of sulphates below 500 °C and sulphides below 650 °C, before melting. Broad emission infrared bands at 3350 and 3105 cm−1 are assigned to the stretching vibration of the water units. The intensity of these two bands decreases as the temperature is raised. The intensity of these bands is lost by 250 °C. The sharp IES band at 992 cm−1 is assigned to the ν1 SO4 2− symmetric stretching vibration. Intensity in this band is lost by 200 °C. New IES bands are noted. The important aspect of this work is the use of high-temperature X-ray diffraction to determine the thermal decomposition of a mineral, in this case kröhnkite.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Back ME, Mandarino JA. Fleischer`s glossary of mineral species. Mineralogical Record; 2008.

  2. 2.

    Domeyko I. Kronnkit, in mineralojía libreria Central de Servat I CA Santiago, Chile 1879:250-2.

  3. 3.

    Sureda RJ. Las vetas de plomo, plata y zinc de el guaico em la província de cordoba, república argentina. Rev Asoc Geol Argent. 1978;33(4):299–324.

    CAS  Google Scholar 

  4. 4.

    Schebesta K. Schlackenminerale aus der walchen bei öblarn. Lapis. 1992;17(2):19–30.

    Google Scholar 

  5. 5.

    Aja SU, Wood SA, Williams-Jones AE. The aqueous geochemistry of Zr and the solubility of some Zr-bearing minerals. Appl Geochem. 1995;10(6):603–20. doi:10.1016/0883-2927(95)00026-7.

    CAS  Article  Google Scholar 

  6. 6.

    Fleck M, Kolitsch U. Natural and synthetic compounds with krohnkite-type chains. An update. l. Z Kristallogr. 2003;218(8):553–67. doi:10.1524/zkri.218.8.553.20689.

    CAS  Google Scholar 

  7. 7.

    Fleck M, Kolitsch U, Hertweck B. Natural and synthetic compounds with krohnkite-type chains: review and classification. Z Kristallogr. 2002;217(9):435–43. doi:10.1524/zkri.217.9.435.22883.

    CAS  Google Scholar 

  8. 8.

    Lawrence LJ, Stocksiek CM, Williams PA. An occurrence of kröhnkite at Broken Hill, NSW. J Proc R Soc NSW. 1994;127:31–2.

    Google Scholar 

  9. 9.

    Dahlman B. The crystal structures of kr.Ovrddot.Ohnkite, and brandtite. Arkiv Min Geol. 1952;1:339–66.

    CAS  Google Scholar 

  10. 10.

    Kolitsch U. A new structure type with krohnkite-like chains. Acta Crystallogr C. 2004;60(Pt 1):i3–6.

    Article  Google Scholar 

  11. 11.

    Kolitsch U. the first indium(iii) member of the krohnkite family. Acta Crystallogr C. 2006;62(Pt 5):i35–7.

    Article  Google Scholar 

  12. 12.

    Kolitsch U, Fleck M. Third update on compounds with krohnkite-type chains: the crystal structure of wendwilsonite and the new triclinic structure types of synthetic agsc(cro4)2 2h2o and m2cu(cr2o7)2 2h2o (m = rb, cs). Eur J Min. 2006;18(4):471–82. doi:10.1127/0935-1221/2006/0018-0471.

    CAS  Article  Google Scholar 

  13. 13.

    Schwendtner K, Kolitsch U. Csga and isotypic Decorated krohnkite-like chains in two unusual hydrogen arsenates. Acta Crystallogr C. 2005;61(Pt 9):i90–3.

    Article  Google Scholar 

  14. 14.

    Schwendtner K, Kolitsch U. A new monoclinic protonated arsenate with decorated krohnkite-like chains. Acta Crystallogr C. 2007;63(Pt 3):i17–20.

    CAS  Article  Google Scholar 

  15. 15.

    Sarma CRN, Satyanandam G, Gopalakrishna PV, Murthy C, Haranadh C. J Phys C Solid State Phys. 1976;9:841–7.

    CAS  Article  Google Scholar 

  16. 16.

    Frost RL, Williams PA, Martens W, Kloprogge JT, Leverett P. Raman spectroscopy of the basic copper phosphate minerals cornetite, libethenite, pseudomalachite, reichenbachite and ludjibaite. J Raman Spectrosc. 2002;33(4):260–3.

    CAS  Article  Google Scholar 

  17. 17.

    Ross SD. 6. S.D. Ross chapter 18 pp 423 in the infrared spectra of minerals, v.C. Farmer editor. The mineralogical society london (1974). in The infrared spectra of minerals,. 1974;Chapter 18, pp 423: The Mineralogical Society London.

  18. 18.

    Ross SD. Inorganic infrared and raman spectra (european chemistry series). 1972.

  19. 19.

    Martens W, Frost RL, Kloprogge JT, Williams PA. Raman spectroscopic study of the basic copper sulphates-implications for copper corrosion and \”bronze disease\”. J Raman Spectrosc. 2003;34(2):145–51.

    CAS  Article  Google Scholar 

  20. 20.

    Wildner M, Stoilova D. Crystal structures and crystal chemical relationships of krohnkite- and collinsite-type compounds. Z. Kristallogr. 2003;218(3):201–9. doi:10.1524/zkri.

    CAS  Google Scholar 

  21. 21.

    Yang H, Jenkins RA, Downs RT, Evans SH, Tait KT. Rruffite, a new member of the roselite group, from tierra amarilla, chile. Can Min. 2011;49(3):877–84. doi:10.3749/canmin.49.3.877.

    CAS  Article  Google Scholar 

  22. 22.

    Yingxia X, Qin QK, Kunshou D, Jinxiang L, Miao MY, Tonghui F, et al. Geochronology evidence of mesozoic metallogenesis and cenozoic oxidation at hongshan hs-epithermal cu-au deposit, kalatage region, eastern tianshan, and its tectonic and paleoclimatic significances. Acta Petrol Sin. 2008;24(10):2371–83.

    Google Scholar 

  23. 23.

    Bhange DS, Ramaswamy V. High temperature thermal expansion behavior of silicalite-1 molecular sieve: in situ htxrd study. Microporous Mesoporous Mater. 2007;103(1–3):235–42.

    CAS  Article  Google Scholar 

  24. 24.

    Reynolds HS, Ram R, Charalambous FA, Antolasic F, Tardio J, Bhargava S. Characterisation of a uranium ore using multiple x-ray diffraction based methods. Miner Eng. 2010;23(9):739–45.

    CAS  Article  Google Scholar 

  25. 25.

    Frost RL, Xi Y, Scholz R. Vibrational spectroscopy of the copper (ii) disodium sulphate dihydrate mineral kröhnkite. Spectrosc Lett. 2013;46(6):447–52.

    CAS  Article  Google Scholar 

  26. 26.

    Kloprogge JT, Hickey L, Frost RL. Heating stage raman and infrared emission spectroscopic study of the dehydroxylation of synthetic mg-hydrotalcite. Appl Clay Sci. 2001;18(1–2):37–49.

    CAS  Article  Google Scholar 

  27. 27.

    Kloprogge JT, Frost RL. Infrared emission spectroscopic study of the dehydroxylation of some natural and synthetic saponites. Neues Jahrb Mineral Monatshefte. 2001;10:446–63.

    Google Scholar 

  28. 28.

    Kloprogge JT, Frost RL, Hickey L. Infrared emission spectroscopic study of the dehydroxylation of some hectorites. Thermochim Acta. 2000;345(2):145–56.

    CAS  Article  Google Scholar 

  29. 29.

    Kloprogge JT, Frost RL. Infrared emission spectroscopy study of the dehydroxylation of 10.Ang. Halloysite from a neogene cryptokarst of southern belgium. Geol Belg. 2000;2(3–4):213–20.

    Google Scholar 

  30. 30.

    Theo Kloprogge J, Frost RL, Fry R. Infrared emission study of the thermal transformation mechanism of Al13-pillared clay. Analyst (Cambridge, United Kingdom). 1999;124(3):381–4.

Download references


The financial and infrastructure support of the Queensland University of Technology, School of Chemistry, Physics and Mechanical Engineering, is gratefully acknowledged. The Australian Research Council (ARC) is thanked for funding the instrumentation. R. Scholz thanks to PROPP/UFOP Project 02/2015 and to FAPEMIG—Fundação de Amparo à Pesquisa do Estado de Minas Gerais (Grant No. APQ-01619-13).

Author information



Corresponding author

Correspondence to Ray L. Frost.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Testasicca, L.P., Frost, R.L., Ruan, X. et al. The application of high-temperature X-ray diffraction and infrared emission spectroscopy to the thermal decomposition of kröhnkite. J Therm Anal Calorim 126, 1089–1095 (2016).

Download citation


  • Kröhnkite
  • High-temperature XRD
  • Infrared emission spectroscopy
  • Sulphate
  • Thermal stability