Rapid, non-destructive determination of butter adulteration by means of photopyroelectric (PPE) calorimetry

Abstract

The study focuses on the application of the photopyroelectric (PPE) technique combined with gas chromatography to detect adulteration of cow milk-obtained butter. The thermal diffusivity and effusivity have been directly measured using back and front PPE detection, respectively, and the results have been correlated with the composition of adulterated butter samples. The back detection configuration has been used in the case of butter adulterated with palm oil, and a possible correlation of the thermal diffusivity with total amount of monounsaturated fatty acids composition has been proposed. For butter adulterated with soy milk, we used the front PPE configuration in order to measure the samples’ thermal effusivity. A strong dependence of the value of thermal effusivity as a function of soy milk content was found.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Barile D, Coïsson JD, Arlorio M, Rinaldi M. Identification of production area of Ossolano Italian cheese with chemometric complex approach. Food Control. 2006;17:197–206.

    Article  Google Scholar 

  2. 2.

    Karoui R, Baerdemaeker JD. A review of the analytical methods coupled with chemometric tools for the determination of the quality and identity of dairy products. Food Chem. 2007;102:621–40.

    CAS  Article  Google Scholar 

  3. 3.

    44:37/1–L37/99. E.U.E.O.J.L., 2001.

  4. 4.

    Cassoli LD, Sartori B, Machado PF. The use of the Fourier Transform Infrared spectroscopy to determine adulterants in raw milk. Rev Bras Zootec. 2011;40:2591–6.

    Article  Google Scholar 

  5. 5.

    Dennis J. Recent developments in food authentication. M. Analyst. 1998;123:151R–6R.

    Article  Google Scholar 

  6. 6.

    Gurdeniz G, Ozen B. Detection of adulteration of extra-virgin olive oil by chemometric analysis of mid- infrared spectral data. Food Chem. 2009;116:519–25.

    CAS  Article  Google Scholar 

  7. 7.

    Nicolaou N, Xu Y, Goodacre R. Fourier transform infrared spectroscopy and multivariate analysis for the detection and quantification of different milk species. J Dairy Sci. 2010;93:5651–60.

    CAS  Article  Google Scholar 

  8. 8.

    Tay A, Singh RK, Krishnan SS, Gore JP. Authentication of olive oil adulterated with vegetable oils using Fourier transform infrared spectroscopy. LWT Food Sci Technol. 2002;35:99–103.

    CAS  Article  Google Scholar 

  9. 9.

    Maudet C, Taberlet P. Detection of cows’ milk in goat’s cheeses inferred from mitochondrial DNA polymorphism. J Dairy Res. 2001;68:229–35.

    CAS  Article  Google Scholar 

  10. 10.

    Tomaszewska-Gras J. Rapid quantitative determination of butter adulteration with palm oil using the DSC technique. Food Control. 2016;60:629–35.

    CAS  Article  Google Scholar 

  11. 11.

    Reid LM, O’Donnell CP, Downey G. Recent technological advances for the determination of food authenticity. Trends Food Sci Technol. 2006;17:344–53.

    CAS  Article  Google Scholar 

  12. 12.

    Socaciu C, Ranga F, Fetea F, Leopold L, Dulf FV, Parlog R. Complementary advanced techniques applied for plant and food authentication.Czech. J Food Sci. 1009;27:S70–5.

    Google Scholar 

  13. 13.

    http://www.ars.usda.gov U.S.D.o.A.A.R.S. 2015.

  14. 14.

    Nurrulhidayah AF, Che Man YB, Rohman A, Amin I, Shuhaimi M, Khatib A. Authentication analysis of butter from beef fat using Fourier transform infrared (FTIR) spectroscopy coupled with chemometrics. Int Food Res J. 2013;20:1383–8.

    CAS  Google Scholar 

  15. 15.

    Koca N, Kocaoglu-Vurma NA, Harper WJ, Rodriguez-Saona LE. Application of temperature-controlled attenuated total reflectance-mid-infrared (ATR-MIR) spectroscopy for rapid estimation of butter adulteration. Food Chem. 2010;121:778–82.

    CAS  Article  Google Scholar 

  16. 16.

    Dadarlat D, Neamtu C, Streza M, Socaciu C, Bele C, Dulf FV. Photopyroelectric detection of vegetable oils’ adulteration. Eur J Lipid Sci Technol. 2009;111:148–54.

    CAS  Article  Google Scholar 

  17. 17.

    Streza M, Dadarlat D, Socaciu C, Bele C, Dulf FV, Simon V. Photopyroelectric detection of vegetable oils’ adulteration. Food Biophys. 2009;4:147–50.

    Article  Google Scholar 

  18. 18.

    Mandelis A, Zver MM. Theory of photopyroelectric spectroscopy of solids. J Appl Phys. 1985;57:4421–30.

    CAS  Article  Google Scholar 

  19. 19.

    Chirtoc M, Mihilescu G. Theory of the photopyroelectric method for investigation of optical and thermal materials properties. Phys Rev B. 1989;40:9606–17.

    CAS  Article  Google Scholar 

  20. 20.

    Silaghi-Dumitrescu L, Dadarlat D, Streza M, Buruiana T, Prodan D, Hodisan I, Prejmerean C. Preparation of a new type of giomers and their thermal characterization by photopyroelectric calorimetry comparison with commercially available materials. J Therm Anal Calorim. 2014;118:623–30.

    CAS  Article  Google Scholar 

  21. 21.

    Strzałkowski K, Streza M, Dadarlat D, Marasek A. Thermal characterization of II–VI binary crystals by photopyroelectric calorimetry and infrared lock-in thermography. J Therm Anal Calorim. 2015;119:319–27.

    Article  Google Scholar 

  22. 22.

    Dadarlat D, Streza M, Onija O, Strzalkowski K, Prejmerean C, Silaghi-Dumitrescu L, Cobirzan N. Complementary photothermal techniques for complete thermal characterization of porous or semi-transparent solids. J Therm Anal Calorim. 2015;119:301–8.

    CAS  Article  Google Scholar 

  23. 23.

    Dadarlat D, Bicanic D, Visser H, Mercuri F, Frandas A. A new photopyroelectric scheme suitable for phase-transition investigations: the front configuration with semitransparent sensor. J Am Oil Chem Soc. 1995;72:273–9.

    CAS  Article  Google Scholar 

  24. 24.

    Marinelli M, Mercuri F, Zammit U, Scudieri F. Anisotropic heat transport in the octylcyanobiphenyl (8CB) liquid crystal. Phys Rev E. 1996;53:701–5.

    CAS  Article  Google Scholar 

  25. 25.

    Dadarlat D, Chirţoc M, Neamţu C, Candea R, Bicanic D. Photopyroelectric (PPE) spectroscopy: absorption, transmission, or reflectance? Phys Stat Sol. 1990;121:K231.

    Article  Google Scholar 

  26. 26.

    Streza M, Pop MN, Kovacs K, Simon V, Longuemart S, Dadarlat D. Thermal effusivity investigations of solid materials by using the thermal-wave-resonator-cavity (TWRC) configuration. Theory Math Simul Laser Phys. 2009;6:1340–4.

    Google Scholar 

  27. 27.

    Dadarlat D. Photopyroelectric calorimetry of liquids; recent development and applications. Laser Phys. 1009;19:1330–9.

    Article  Google Scholar 

  28. 28.

    Dulf FV, Unguresan ML, Vodnar DC, Socaciu C. Free and esterified sterol distribution in four Romanian vegetable oil. Not Bot Hortic Agrobot. 2010;38:91–7.

    CAS  Google Scholar 

  29. 29.

    Dulf FV, Oroian I, Vodnar DC, Socaciu C, Pintea A. Lipid classes and fatty acid regiodistribution in triacylglycerols of seed oils of two Sambucus species (S. nigra L. and S. ebulus L.). Molecules. 2013;18:11768.

    CAS  Article  Google Scholar 

  30. 30.

    Uysal RS, Boyaci IH, Genis HE, Tamer U. Determination of butter adulteration with margarine using Raman spectroscopy. Food Chem. 2013;141:4397–403.

    CAS  Article  Google Scholar 

  31. 31.

    Delenclos S, Dadarlat D, Houriez N, Longuemart S, Kolinsky C, Hadj AS. On the accurate determination of thermal diffusivity of liquids by using the photopyroelectric thickness scanning method. Rev Sci Instrum. 2007;78:024902.

    CAS  Article  Google Scholar 

  32. 32.

    Shen J, Mandelis A, Aloysius BD. Thermal-wave resonant-cavity measurements of the thermal diffusivity of air: a comparison between cavity-length and modulation-frequency scans. Int J Thermophys. 1996;17:1241–54.

    CAS  Article  Google Scholar 

  33. 33.

    Dadarlat D, Neamtu C, Houriez N, Delenclos S, Longuemart S, Hadj AS. Photopyroelectric measurement of thermal effusivity of liquids by sample’s thickness scan. Eur Phys J Spec Top. 2008;153:115–8.

    Article  Google Scholar 

  34. 34.

    Dulf FV, Andrei S, Bunea A, Socaciu C. Fatty acid and phytosterol contents of some Romanian wild and cultivated berry pomaces. Chem Pap. 2012;66:925–34.

    CAS  Article  Google Scholar 

  35. 35.

    Pintea A, Dulf FV, Bunea A, Matea C, Andrei C. Comparative analysis of lipophilic compounds in eggs of organically raised ISA Brown and Araucana hens. Chem Pap. 2012;66:955–63.

    CAS  Article  Google Scholar 

  36. 36.

    Dulf FV, Pamfil D, Baciu A, Pintea A. Fatty acid composition of lipids in pot marigold (Calendula officinalis L.) seed genotypes. Chem Cent J. 2013;7:8.

    CAS  Article  Google Scholar 

  37. 37.

    Dulf FV, Vodnar DC, Dulf EH, Tosa MI. Total phenolic contents, antioxidant activities and lipid fractions from berry pomaces obtained by solid-state fermentation of two Sambucus species with Aspergillus Niger. J Agric Food Chem. 2015;63:3489–500.

    CAS  Article  Google Scholar 

  38. 38.

    Dadarlat D, Neamtu C (2009) Thermal wave physics and related photothermal techniques: basic principles and recent developments. ed. Marin EM, Edit. Kerala, India,. 2009; 65-97.

  39. 39.

    Nakamura M, Takekawa S, Kitamura K. Anisotropy of thermal conductivities in non- and Mg-doped near-stoichiometric LiTaO3 crystals. Opt Mater. 2010;32:1410–2.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This paper was published under the frame of European Social Fund, Human Resources Development Operational Programme 2007–2013, Project No. POSDRU/159/1.5/S/132765. Partial financial support through the National Research Programs, PN-II-ID-PCE-2011-3-0036 and PN-II-PT-PCCA-2011-3.2-1419, is also acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lucian Cuibus.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cuibus, L., Dadarlat, D., Streza, M. et al. Rapid, non-destructive determination of butter adulteration by means of photopyroelectric (PPE) calorimetry. J Therm Anal Calorim 127, 1193–1200 (2017). https://doi.org/10.1007/s10973-016-5630-4

Download citation

Keywords

  • Photopyroelectric technique
  • Butter adulteration
  • Food processing
  • Non-destructive measuring techniques
  • Non-destructive evaluation
  • Food industry