Journal of Thermal Analysis and Calorimetry

, Volume 127, Issue 2, pp 1193–1200 | Cite as

Rapid, non-destructive determination of butter adulteration by means of photopyroelectric (PPE) calorimetry

  • Lucian CuibusEmail author
  • Dorin Dadarlat
  • Mihaela Streza
  • Francisc V. Dulf
  • Zorita Diaconeasa
  • Carmen Socaciu


The study focuses on the application of the photopyroelectric (PPE) technique combined with gas chromatography to detect adulteration of cow milk-obtained butter. The thermal diffusivity and effusivity have been directly measured using back and front PPE detection, respectively, and the results have been correlated with the composition of adulterated butter samples. The back detection configuration has been used in the case of butter adulterated with palm oil, and a possible correlation of the thermal diffusivity with total amount of monounsaturated fatty acids composition has been proposed. For butter adulterated with soy milk, we used the front PPE configuration in order to measure the samples’ thermal effusivity. A strong dependence of the value of thermal effusivity as a function of soy milk content was found.


Photopyroelectric technique Butter adulteration Food processing Non-destructive measuring techniques Non-destructive evaluation Food industry 



This paper was published under the frame of European Social Fund, Human Resources Development Operational Programme 2007–2013, Project No. POSDRU/159/1.5/S/132765. Partial financial support through the National Research Programs, PN-II-ID-PCE-2011-3-0036 and PN-II-PT-PCCA-2011-3.2-1419, is also acknowledged.


  1. 1.
    Barile D, Coïsson JD, Arlorio M, Rinaldi M. Identification of production area of Ossolano Italian cheese with chemometric complex approach. Food Control. 2006;17:197–206.CrossRefGoogle Scholar
  2. 2.
    Karoui R, Baerdemaeker JD. A review of the analytical methods coupled with chemometric tools for the determination of the quality and identity of dairy products. Food Chem. 2007;102:621–40.CrossRefGoogle Scholar
  3. 3.
    44:37/1–L37/99. E.U.E.O.J.L., 2001.Google Scholar
  4. 4.
    Cassoli LD, Sartori B, Machado PF. The use of the Fourier Transform Infrared spectroscopy to determine adulterants in raw milk. Rev Bras Zootec. 2011;40:2591–6.CrossRefGoogle Scholar
  5. 5.
    Dennis J. Recent developments in food authentication. M. Analyst. 1998;123:151R–6R.CrossRefGoogle Scholar
  6. 6.
    Gurdeniz G, Ozen B. Detection of adulteration of extra-virgin olive oil by chemometric analysis of mid- infrared spectral data. Food Chem. 2009;116:519–25.CrossRefGoogle Scholar
  7. 7.
    Nicolaou N, Xu Y, Goodacre R. Fourier transform infrared spectroscopy and multivariate analysis for the detection and quantification of different milk species. J Dairy Sci. 2010;93:5651–60.CrossRefGoogle Scholar
  8. 8.
    Tay A, Singh RK, Krishnan SS, Gore JP. Authentication of olive oil adulterated with vegetable oils using Fourier transform infrared spectroscopy. LWT Food Sci Technol. 2002;35:99–103.CrossRefGoogle Scholar
  9. 9.
    Maudet C, Taberlet P. Detection of cows’ milk in goat’s cheeses inferred from mitochondrial DNA polymorphism. J Dairy Res. 2001;68:229–35.CrossRefGoogle Scholar
  10. 10.
    Tomaszewska-Gras J. Rapid quantitative determination of butter adulteration with palm oil using the DSC technique. Food Control. 2016;60:629–35.CrossRefGoogle Scholar
  11. 11.
    Reid LM, O’Donnell CP, Downey G. Recent technological advances for the determination of food authenticity. Trends Food Sci Technol. 2006;17:344–53.CrossRefGoogle Scholar
  12. 12.
    Socaciu C, Ranga F, Fetea F, Leopold L, Dulf FV, Parlog R. Complementary advanced techniques applied for plant and food authentication.Czech. J Food Sci. 1009;27:S70–5.Google Scholar
  13. 13. U.S.D.o.A.A.R.S. 2015.
  14. 14.
    Nurrulhidayah AF, Che Man YB, Rohman A, Amin I, Shuhaimi M, Khatib A. Authentication analysis of butter from beef fat using Fourier transform infrared (FTIR) spectroscopy coupled with chemometrics. Int Food Res J. 2013;20:1383–8.Google Scholar
  15. 15.
    Koca N, Kocaoglu-Vurma NA, Harper WJ, Rodriguez-Saona LE. Application of temperature-controlled attenuated total reflectance-mid-infrared (ATR-MIR) spectroscopy for rapid estimation of butter adulteration. Food Chem. 2010;121:778–82.CrossRefGoogle Scholar
  16. 16.
    Dadarlat D, Neamtu C, Streza M, Socaciu C, Bele C, Dulf FV. Photopyroelectric detection of vegetable oils’ adulteration. Eur J Lipid Sci Technol. 2009;111:148–54.CrossRefGoogle Scholar
  17. 17.
    Streza M, Dadarlat D, Socaciu C, Bele C, Dulf FV, Simon V. Photopyroelectric detection of vegetable oils’ adulteration. Food Biophys. 2009;4:147–50.CrossRefGoogle Scholar
  18. 18.
    Mandelis A, Zver MM. Theory of photopyroelectric spectroscopy of solids. J Appl Phys. 1985;57:4421–30.CrossRefGoogle Scholar
  19. 19.
    Chirtoc M, Mihilescu G. Theory of the photopyroelectric method for investigation of optical and thermal materials properties. Phys Rev B. 1989;40:9606–17.CrossRefGoogle Scholar
  20. 20.
    Silaghi-Dumitrescu L, Dadarlat D, Streza M, Buruiana T, Prodan D, Hodisan I, Prejmerean C. Preparation of a new type of giomers and their thermal characterization by photopyroelectric calorimetry comparison with commercially available materials. J Therm Anal Calorim. 2014;118:623–30.CrossRefGoogle Scholar
  21. 21.
    Strzałkowski K, Streza M, Dadarlat D, Marasek A. Thermal characterization of II–VI binary crystals by photopyroelectric calorimetry and infrared lock-in thermography. J Therm Anal Calorim. 2015;119:319–27.CrossRefGoogle Scholar
  22. 22.
    Dadarlat D, Streza M, Onija O, Strzalkowski K, Prejmerean C, Silaghi-Dumitrescu L, Cobirzan N. Complementary photothermal techniques for complete thermal characterization of porous or semi-transparent solids. J Therm Anal Calorim. 2015;119:301–8.CrossRefGoogle Scholar
  23. 23.
    Dadarlat D, Bicanic D, Visser H, Mercuri F, Frandas A. A new photopyroelectric scheme suitable for phase-transition investigations: the front configuration with semitransparent sensor. J Am Oil Chem Soc. 1995;72:273–9.CrossRefGoogle Scholar
  24. 24.
    Marinelli M, Mercuri F, Zammit U, Scudieri F. Anisotropic heat transport in the octylcyanobiphenyl (8CB) liquid crystal. Phys Rev E. 1996;53:701–5.CrossRefGoogle Scholar
  25. 25.
    Dadarlat D, Chirţoc M, Neamţu C, Candea R, Bicanic D. Photopyroelectric (PPE) spectroscopy: absorption, transmission, or reflectance? Phys Stat Sol. 1990;121:K231.CrossRefGoogle Scholar
  26. 26.
    Streza M, Pop MN, Kovacs K, Simon V, Longuemart S, Dadarlat D. Thermal effusivity investigations of solid materials by using the thermal-wave-resonator-cavity (TWRC) configuration. Theory Math Simul Laser Phys. 2009;6:1340–4.Google Scholar
  27. 27.
    Dadarlat D. Photopyroelectric calorimetry of liquids; recent development and applications. Laser Phys. 1009;19:1330–9.CrossRefGoogle Scholar
  28. 28.
    Dulf FV, Unguresan ML, Vodnar DC, Socaciu C. Free and esterified sterol distribution in four Romanian vegetable oil. Not Bot Hortic Agrobot. 2010;38:91–7.Google Scholar
  29. 29.
    Dulf FV, Oroian I, Vodnar DC, Socaciu C, Pintea A. Lipid classes and fatty acid regiodistribution in triacylglycerols of seed oils of two Sambucus species (S. nigra L. and S. ebulus L.). Molecules. 2013;18:11768.CrossRefGoogle Scholar
  30. 30.
    Uysal RS, Boyaci IH, Genis HE, Tamer U. Determination of butter adulteration with margarine using Raman spectroscopy. Food Chem. 2013;141:4397–403.CrossRefGoogle Scholar
  31. 31.
    Delenclos S, Dadarlat D, Houriez N, Longuemart S, Kolinsky C, Hadj AS. On the accurate determination of thermal diffusivity of liquids by using the photopyroelectric thickness scanning method. Rev Sci Instrum. 2007;78:024902.CrossRefGoogle Scholar
  32. 32.
    Shen J, Mandelis A, Aloysius BD. Thermal-wave resonant-cavity measurements of the thermal diffusivity of air: a comparison between cavity-length and modulation-frequency scans. Int J Thermophys. 1996;17:1241–54.CrossRefGoogle Scholar
  33. 33.
    Dadarlat D, Neamtu C, Houriez N, Delenclos S, Longuemart S, Hadj AS. Photopyroelectric measurement of thermal effusivity of liquids by sample’s thickness scan. Eur Phys J Spec Top. 2008;153:115–8.CrossRefGoogle Scholar
  34. 34.
    Dulf FV, Andrei S, Bunea A, Socaciu C. Fatty acid and phytosterol contents of some Romanian wild and cultivated berry pomaces. Chem Pap. 2012;66:925–34.CrossRefGoogle Scholar
  35. 35.
    Pintea A, Dulf FV, Bunea A, Matea C, Andrei C. Comparative analysis of lipophilic compounds in eggs of organically raised ISA Brown and Araucana hens. Chem Pap. 2012;66:955–63.CrossRefGoogle Scholar
  36. 36.
    Dulf FV, Pamfil D, Baciu A, Pintea A. Fatty acid composition of lipids in pot marigold (Calendula officinalis L.) seed genotypes. Chem Cent J. 2013;7:8.CrossRefGoogle Scholar
  37. 37.
    Dulf FV, Vodnar DC, Dulf EH, Tosa MI. Total phenolic contents, antioxidant activities and lipid fractions from berry pomaces obtained by solid-state fermentation of two Sambucus species with Aspergillus Niger. J Agric Food Chem. 2015;63:3489–500.CrossRefGoogle Scholar
  38. 38.
    Dadarlat D, Neamtu C (2009) Thermal wave physics and related photothermal techniques: basic principles and recent developments. ed. Marin EM, Edit. Kerala, India,. 2009; 65-97.Google Scholar
  39. 39.
    Nakamura M, Takekawa S, Kitamura K. Anisotropy of thermal conductivities in non- and Mg-doped near-stoichiometric LiTaO3 crystals. Opt Mater. 2010;32:1410–2.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Department of Food Science, Faculty of Food Science and TechnologyUniversity of Agricultural Science and Veterinary Medicine Cluj-NapocaCluj-NapocaRomania
  2. 2.National R&D Institute for Isotopic and Molecular TechnologiesCluj-NapocaRomania
  3. 3.Department of Biochemistry, Faculty of AgricultureUniversity of Agricultural Sciences and Veterinary Medicine Cluj-NapocaCluj-NapocaRomania

Personalised recommendations