Journal of Thermal Analysis and Calorimetry

, Volume 127, Issue 1, pp 755–763 | Cite as

Thermal and kinetic study of hexagonal boric acid versus triclinic boric acid in air flow

  • Andrei RotaruEmail author


Boric acid is a very important inorganic material with diverse uses in optoelectronics, petroleum industry, medicine, agriculture, etc. Recently, it was reported on the modification of the crystallization system of the triclinic boric acid (TBA) to hexagonal boric acid (HBA), when a special obtaining procedure is applied. In this paper, the thermokinetic stability of HBA novel material was comparatively studied with respect to the well-known TBA, in air flow atmosphere. Both HBA and TBA undergo a three-step overall thermal decomposition reaction (dehydration), following similar pathways; from the thermodynamic point of view HBA is more stable—decomposition temperatures and ΔH are higher in this case compared to those of TBA. The kinetic analysis was performed by means of the isoconversional methods, for each step of dehydration observing different thermokinetic regions. Higher thermal stability for HBA enables it to be employed at higher temperatures instead of TBA, explaining why the triclinic symmetry enhances the formation actually of the pseudo-hexagonal crystals as crystal habit at the macroscopic scale. Lower thermodynamic and kinetic stability of HBA makes it easier to be activated and thus more instable at the microstructural scale: this is an indirect proof of the TBA presence in the usual surrounding conditions and in the same time raises the probability for HBA molecules to slide onto their crystalline layers due to the lability of hydrogen bonds keeping them and thus increased potential to intercalate with other molecules. The present results open the possibility for promising applications of HBA as a better lubricant for various industries, while in the medical sector superior cleanser, antifungal and antibacterial properties may be foreseen.


Activation energy Boric acid Hexagonal crystallization system Kinetic stability Thermal analysis Triclinic crystallization system 



The author would like to thank Professor Romulus Scorei from the University of Craiova, Romania, who provided the hexagonal and triclinic boric acid samples.


  1. 1.
    Peak D, Luther GW III, Sparks DL. ATR-FTIR spectroscopic studies of boric acid adsorption on hydrous ferric oxide. Geochim Cosmochim Acta. 2003;67:2551–60.CrossRefGoogle Scholar
  2. 2.
    Wisniak J. Borax, boric acid, and boron-from exotic to commodity. Indian J Chem Technol. 2005;12:488–500.Google Scholar
  3. 3.
    Cleaver JAS, Karatzas G, Louis S, Hayati I. Borax, moisture-induced caking of boric acid powder. Powder Technol. 2004;146:93–101.CrossRefGoogle Scholar
  4. 4.
    Grew ES, Bada JL, Hazen RM. Borate minerals and origin of the RNA world. Orig Life Evol Biosph. 2011;41:307–16.CrossRefGoogle Scholar
  5. 5.
    Marinelli G. Some geological data on the geothermal areas of Tuscany. Bull Volcanologique. 1969;33:319–33.CrossRefGoogle Scholar
  6. 6.
    Schou JS, Jansen JA, Aggerbeck B. Disease, human pharmacokinetics and safety of boric acid. In: Chambers PL, Preziosi P, Chambers CM, editors. Disease, metabolism and reproduction in the toxic response to drugs and other chemicals, vol 7. Berlin: Springer; 1984. p. 232–5.CrossRefGoogle Scholar
  7. 7.
    De Seta F, Schmidt M, Vu B, Essmann M, Larsen B. Antifungal mechanisms supporting boric acid therapy of Candida vaginitis. J Antimicrobial Chemotherapy. 2009;63:325–36.CrossRefGoogle Scholar
  8. 8.
    Habes D, Morakchi S, Aribi N, Farine JP, Soltani N. Boric acid toxicity to the German cockroach, Blattella germanica: alterations in midgut structure, and acetylcholinesterase and glutathione S-transferase activity. Pesticide Biochem. 2006;84:17–24.CrossRefGoogle Scholar
  9. 9.
    Wang Q, Li J, Winandy JE. Chemical mechanism of fire retardance of boric acid on wood. Wood Sci Technol. 2004;38:375–89.CrossRefGoogle Scholar
  10. 10.
    Keepin GR, Wimett TF, Zeigler RK. Delayed neutrons from fissionable isotopes of uranium, plutonium and thorium. J Nuclear Energy. 1957;6:IN2-21.Google Scholar
  11. 11.
    Steinhauser G, Klapotke TM. “Green” pyrotechnics: a chemists’ challenge. Ind Eng Chem. 2008;476:3330–47.Google Scholar
  12. 12.
    Lee CT. Production of alumino-borosilicate foamed glass body from waste LCD glass. J Industr Eng Chem. 2013;19:1916–25.CrossRefGoogle Scholar
  13. 13.
    Housecroft CE, Sharpe AG. Inorganic chemistry. 2nd ed. Munchen: Person Prentice-Hall; 2005.Google Scholar
  14. 14.
    Jolly WL. Modern inorganic chemistry. 2nd ed. New York: McGraw-Hill; 1991.Google Scholar
  15. 15.
    Lee CT. Production of alumino-borosilicate foamed glass body from waste LCD glass. J Ind Eng Chem. 2013;19:1916–25.CrossRefGoogle Scholar
  16. 16.
    Rossmann C, Burger H. Cleaning compositions containing boric acid or an alkali metal borate in phosphoric acid and their use in cleaning solid surfaces. U.S. Patent No 4,485,027. 1984.Google Scholar
  17. 17.
    Kakiage M, Tahara N, Yanase I, Kobayashi H. Low-temperature synthesis of boron carbide powder from condensed boric acid–glycerin product. Mater Lett. 2011;65:1839–41.CrossRefGoogle Scholar
  18. 18.
    Rotaru P, Scorei R, Harabor A, Dumitru M. Thermal analysis of a calcium fructoborate sample. Thermochim Acta. 2010;506:8–13.CrossRefGoogle Scholar
  19. 19.
    Scorei RI, Rotaru P. Calcium fructoborate-potential anti-inflammatory agent. Biol Trace Elem Res. 2011;143:1223–38.CrossRefGoogle Scholar
  20. 20.
    Bernal JD. On the interpretation of X-ray, single crystal, rotation photographs. Proc R Soc Lond Ser A. 1926;113:117–60.CrossRefGoogle Scholar
  21. 21.
    Zachariasen WH. The crystal lattice of boric acid, BO3H3. Zeitschr Kristallograph-Cryst Mater. 1934;88:150–61.Google Scholar
  22. 22.
    Zachariasen WH. The precise structure of orthoboric acid. Acta Cryst. 1954;7:305–10.CrossRefGoogle Scholar
  23. 23.
    Dorset DL. Direct methods in electron crystallography-structure analysis of boric acid. Acta Cryst Sect A. 1992;48:568–74.CrossRefGoogle Scholar
  24. 24.
    Shuvalo RR, Burns PC. A new polytype of orthoboric acid, H3BO3-3T. Acta Cryst Sect C. 2003;59:i47–9.CrossRefGoogle Scholar
  25. 25.
    Tazaki H. Structure of orthorhombic metaboric acid, HBOr(a). J Sci Hiroshima Univ A. 1940;10:55–61.Google Scholar
  26. 26.
    Zachariasen WH. A new analytical method for solving complex crystal structures. Acta Cryst. 1952;5:68–73.CrossRefGoogle Scholar
  27. 27.
    Zachariasen WH. The crystal structure of cubic metaboric acid. Acta Cryst. 1963;16:380–4.CrossRefGoogle Scholar
  28. 28.
    Harabor A, Rotaru P, Scorei RI, Harabor NA. Non-conventional hexagonal structure for boric acid. J Therm Anal Calorim. 2014;118:1375–84.CrossRefGoogle Scholar
  29. 29.
    Kissinger HL. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  30. 30.
    Akahira T, Sunose T. (Trans 1969) Joint convention of four electrical institutes. Paper no. 246. Res Rep Chiba Inst Technol. 1971;16:22–31.Google Scholar
  31. 31.
    Ortega A. A simple and precise linear integral method for isoconversional data. Thermochim Acta. 2008;474:81–6.CrossRefGoogle Scholar
  32. 32.
    Rotaru A, Gosa M, Rotaru P. Computational thermal and kinetic analysis. Software for non-isothermal kinetics by standard procedure. J Therm Anal Calorim. 2008;94:367–71.CrossRefGoogle Scholar
  33. 33.
    Rotaru A, Gosa M. Computational thermal and kinetic analysis. Complete standard procedure to evaluate the kinetic triplet form non-isothermal data. J Therm Anal Calorim. 2009;97:421–6.CrossRefGoogle Scholar
  34. 34.
    Kropidlowska A, Rotaru A, Strankowski M, Becker B, Segal E. Heteroleptic cadmium(II) complex, potential precursor for semiconducting CDS layers. Thermal stability and non-isothermal decomposition kinetics. J Therm Anal Calorim. 2008;91:903–9.CrossRefGoogle Scholar
  35. 35.
    Olar R, Badea M, Grecu MN, Marinescu D, Lazar V, Balotescu C. Copper(II) complexes with N,N-dimethylbiguanide. J Therm Anal Calorim. 2008;92:239–43.CrossRefGoogle Scholar
  36. 36.
    Moanta A, Samide A, Rotaru P, Ionescu C, Tutunaru B. Synthesis and characterization of novel furoate azodye using spectral and thermal methods of analysis. J Therm Anal Calorim. 2015;119:1139–45.CrossRefGoogle Scholar
  37. 37.
    Varga J, Menyhard A. Crystallization, melting and structure of polypropylene/poly (vinylidene-fluoride) blends. J Therm Anal Calorim. 2003;73:735–43.CrossRefGoogle Scholar
  38. 38.
    Riela S, Massaro M, Colletti CG, Bommarito A, Giordano C, Milioto S, Noto R, Poma P, Lazzara G. Development and characterization of co-loaded curcumin/triazole-halloysite systems and evaluation of their potential anticancer activity. Int J Pharmaceutics. 2014;475:613–23.CrossRefGoogle Scholar
  39. 39.
    Cavallaro G, Lazzara G, Milioto S, Parisi F. Halloysite nanotubes as sustainable nanofiller for paper consolidation and protection. J Therm Anal Calorim. 2014;117:1293–8.CrossRefGoogle Scholar
  40. 40.
    Cavallaro G, Lazzara G, Massaro M, Milioto S, Noto R, Parisi F, Riela S. Biocompatible Poly(N-isopropylacrylamide)-halloysite nanotubes for thermoresponsive curcumin release. J Phys Chem C. 2015;119:8944–51.CrossRefGoogle Scholar
  41. 41.
    Moanta A, Ionescu C, Rotaru P, Socaciu M, Harabor A. Structural characterization, thermal investigation, and liquid crystalline behavior of 4-[(4-chlorobenzyl) oxy]-3, 4′-dichloroazobenzene. J Therm Anal Calorim. 2010;102:1079–86.CrossRefGoogle Scholar
  42. 42.
    Degeratu S, Rotaru P, Manolea G, Manolea HO, Rotaru A. Thermal characteristics of Ni–Ti SMA (shape memory alloy) actuators. J Therm Anal Calorim. 2009;97:695–700.CrossRefGoogle Scholar
  43. 43.
    Budrugeac P, Cucos A. Application of Kissinger, isoconversional and multivariate non-linear regression methods for evaluation of the mechanism and kinetic parameters of phase transitions of type I collagen. Thermochim Acta. 2013;565:241–52.CrossRefGoogle Scholar
  44. 44.
    Tarrio-Saavedra J, Lopez-Beceiro J, Alvarez A, Naya S, Quintana-Pita S, Garcia-Pardo S, Garcia-Saban FJ. Lifetime estimation applying a kinetic model based on the generalized logistic function to biopolymers. J Therm Anal Calorim. 2015;122:1203–12.CrossRefGoogle Scholar
  45. 45.
    Rotaru A, Constantinescu C, Mandruleanu A, Rotaru P, Moldovan A, Gyoryova K, Dinescu M, Balek V. Thermochim Acta. 2010;498:81–91.CrossRefGoogle Scholar
  46. 46.
    Rotaru A. Thermal analysis and kinetic study of Petroşani bituminous coal from Romania in comparison with a sample of Ural bituminous coal. J Therm Anal Calorim. 2011;110:1283–91.CrossRefGoogle Scholar
  47. 47.
    Mittemeijer EJ, Sommer F. Solid state phase transformation kinetics: a modular transformation model. Zeitschrift Metallkunde. 2002;93:352–61.CrossRefGoogle Scholar
  48. 48.
    Cao F, Schwartz TJ, McClelland DJ, Krishna SH, Dumesic JA, Huber GW. Dehydration of cellulose to levoglucosenone using polar aprotic solvents. Energy Environ Sci. 2015;8:1808–15.CrossRefGoogle Scholar
  49. 49.
    Prusova A, Smejkalova D, Chytil M, Velebny V, Kucerik J. An alternative DSC approach to study hydration of hyaluronan. Carbohydrate Polym. 2010;82:498–503.CrossRefGoogle Scholar
  50. 50.
    Kucerik J, Prusova A, Rotaru A, Flimel K, Janecek J, Conte P. DSC study on hyaluronan drying and hydration. Thermochim Acta. 2011;523:245–9.CrossRefGoogle Scholar
  51. 51.
    Kucerik J, Bursakova P, Prusova A, Grebikova L, Schaumann GE. Hydration of humic and fulvic acids studied by DSC. J Therm Anal Calorim. 2012;110:451–9.CrossRefGoogle Scholar
  52. 52.
    Elbeyli IY, Piskin S. Kinetic study of the thermal dehydration of borogypsum. J Hazardous Mater. 2004;B116:111–7.CrossRefGoogle Scholar
  53. 53.
    Derun EM, Kipcak AS, Senberber FT, Yilmaz MS. Characterization and thermal dehydration kinetics of admontite mineral hydrothermally synthesized from magnesium oxide and boric acid precursor. Res Chem Intermed. 2015;41:853–66.CrossRefGoogle Scholar
  54. 54.
    Sevim F, Demir F, Bilen M, Okur H. Kinetic analysis of thermal decomposition of boric acid from thermogravimetric data. Korean J Chem Eng. 2006;23:736–40.CrossRefGoogle Scholar
  55. 55.
    Balci S, Sezgi NA, Eren E. Boron oxide production kinetics using boric acid as raw material. Ind Eng Chem Res. 2012;51:11091–6.CrossRefGoogle Scholar
  56. 56.
    Zhang W, Sun S, Xu J, Chen Z. Kinetic study of boron oxide prepared by dehydration of boric acid. Asian J Chem. 2015;27:1001–4.CrossRefGoogle Scholar
  57. 57.
    Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.CrossRefGoogle Scholar
  58. 58.
    Suzuki M, Misic DM, Koyama O, Kawazoe K. Study of thermal regeneration of spent activated carbons: thermogravimetric measurement of various single component organics loaded on activated carbons. Chem Eng Sci. 1978;33:271–9.CrossRefGoogle Scholar
  59. 59.
    Sittig M. Handbook of toxic and hazardous chemicals and carcinogens. 4th ed. A-H Norwich: Noyes Publications; 2002.Google Scholar
  60. 60.
    Grigorovskaya VA, Shashkin DP, Zapadinskii BI. Low-temperature transformations of orthoboric acid. Russian J Phys Chem B. 2009;3:656–60.CrossRefGoogle Scholar
  61. 61.
    Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  62. 62.
    Criado JM, Morales J. Defects of thermogravimetric analysis for discerning between first order reactions and those taking place through the Avrami-Erofeev’s mechanism. Thermochim Acta. 1976;16:382–7.CrossRefGoogle Scholar
  63. 63.
    Perez-Maqueda LA, Criado JM, Gotor FJ, Malek J. Advantages of combined kinetic analysis of experimental data obtained under any heating profile. J Phys Chem A. 2002;106:2862–8.CrossRefGoogle Scholar
  64. 64.
    Budrugeac P. Some methodological problems concerning the kinetic analysis of non-isothermal data for thermal and thermo-oxidative degradation of polymers and polymeric materials. Polym Degrad Stability. 2005;89:265–73.CrossRefGoogle Scholar
  65. 65.
    Vyazovkin S. Model-free kinetics. Staying free of multiplying entities without necessity. J Therm Anal Cal. 2006;83:45–51.CrossRefGoogle Scholar
  66. 66.
    Vyazovkin S. Isoconversional kinetics. In: Brown ME, Gallagher PK, editors. The handbook of thermal analysis and calorimetry, chapter 13, volume 5: recent advances, techniques and applications. Amsterdam: Elsevier; 2008.Google Scholar
  67. 67.
    Vyazovkin S, Lesnikovich AI. An approach to the solution of the inverse kinetic problem in the case of complex processes: part 1. Methods employing a series of thermoanalytical curves. Thermochim Acta. 1990;165:273–80.CrossRefGoogle Scholar
  68. 68.
    Vyazovkin S. A unified approach to kinetic processing of non-isothermal data. Int J Chem Kinet. 1996;28:95–101.CrossRefGoogle Scholar
  69. 69.
    Friedmann HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C Polym Symp. 1965;50:183–95.Google Scholar
  70. 70.
    Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand A Phys Chem. 1966;70:487–523.CrossRefGoogle Scholar
  71. 71.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.CrossRefGoogle Scholar
  72. 72.
    Tang W, Chen D. An integral method to determine variation in activation energy with extent of conversion. Thermochim Acta. 2005;433:72–6.CrossRefGoogle Scholar
  73. 73.
    Li C-R, Tang T. Dynamic thermal analysis of solid-state reactions. J Therm Anal Calorim. 1997;49:1243–8.CrossRefGoogle Scholar
  74. 74.
    Vyazovkin S, Dollimore D. Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids. J Chem Inf Comput Sci. 1996;36:42–5.CrossRefGoogle Scholar
  75. 75.
    Vyazovkin S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comp Chem. 1997;18:393–402.CrossRefGoogle Scholar
  76. 76.
    Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comp Chem. 2001;22:178–83.CrossRefGoogle Scholar
  77. 77.
    Budrugeac P. Differential non-linear isoconversional procedure for evaluating the activation energy of non-isothermal reactions. J Therm Anal Calorim. 2002;68:131–9.CrossRefGoogle Scholar
  78. 78.
    Orfao J. Review and evaluation of the approximations to the temperature integral. AIChE J. 2007;53:2905–15.CrossRefGoogle Scholar
  79. 79.
    Popescu C. Integral method to analyze the kinetics of heterogeneous reactions under non-isothermal conditions a variant on the Ozawa–Flynn–Wall method. Thermochim Acta. 1996;285:309–23.CrossRefGoogle Scholar
  80. 80.
    Rotaru A. Thermal behaviour of some solid combustibles and the non-isothermal kinetics of their decomposition and burning. Ph.D. Thesis. University “Politehnica” of Bucharest. 2011.Google Scholar
  81. 81.
    Hall DG. Structure, properties, and preparation of boronic acid derivatives. Overview of their reactions and applications, chapter 1. In: Hall DG, editor. Boronic acids: preparation and applications in organic synthesis and medicine. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2006.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Laser DepartmentINFLPR – National Institute for Laser, Plasma and Radiation PhysicsMăgurele (Ilfov)Romania
  2. 2.Institute of ChemistryAcademy of Sciences of MoldovaChişinăuRepublic of Moldova

Personalised recommendations