Thermal activities of 6-gingerol, 8-gingerol and 6-shogaol on the potentiation of mitochondria thermogenesis based on microcalorimetry


Zingiberis Rhizoma is a typical Chinese herb in ‘hot’ property. Nowadays, increasing attention has been aroused for its essential role in both health care and treatment of ‘cold’ syndrome. And research about characteristics of Zingiberis Rhizoma is able to provide an important reference for its deeper understand and successful clinic application. However, cognition level about the ‘hot’ property of Zingiberis Rhizoma is superficial, and mechanism behind the ‘hot’ presentation is still elusive and unclear. In this study, the ‘hot’ property of Zingiberis Rhizoma was investigated at a monomer level with assistance of microcalorimetry, an objective and sensitive method in evaluating biological activity. Three bioactive compounds including 6-gingerol, 8-gingerol and 6-shogaol were selected, and their thermal activities were explored with mitochondria as target. The power–time curves were recorded, and five thermal parameters (k, P max, T max, Q and P av) were obtained. With PCA, P av was calculated to be the main parameter to measure the bioactivities of 6-gingerol, 8-gingerol and 6-shogaol. Finally, the bioactivities of three subjects were compared with sequence to be 6-gingerol > 8-gingerol > 6-shogaol. Generally, our study is promising to offer a reference to the research about characteristics of Zingiberis Rhizoma or other herbs and is of great interest for clinic practice.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Jia L, Zhao YL, Wang JB, Zou WJ, Li RS, Yang HB, Cheng DH, Xiao XH. Study on the complex prescription compatibility law of the cold and hot nature of Mahuang Decoction and its categorized formulae based on the cold-hot pad differentiating assay. Chin J Integr Med. 2011;17(4):290–5.

    Article  Google Scholar 

  2. 2.

    Sheng L. The relationship between Herb’s 4 natures and 5 flavors. Mod J Integr TCM West Med. 2004;11:2804–6.

    Google Scholar 

  3. 3.

    Wang Y, Zhou S, Wang M, Liu S, Hu Y, He C, Li P, Wan JB. UHPLC/Q-TOFMS-based metabolomics for the characterization of cold and hot properties of Chinese Materia Medica. J Ethnopharmacol. 2015;S0378–8741(15):30312–3.

    Google Scholar 

  4. 4.

    Giordano J, Boatwright D, Stapleton S, Huff L. Blending the boundaries: steps toward an integration of complementary and alternative medicine into mainstream practice. J Altern Complement Med. 2002;8(6):897–906.

    Article  Google Scholar 

  5. 5.

    Lozano F. Basic theories of traditional Chinese medicine. Acupuncture for pain management. New York: Springer; 2014. p. 13–43.

    Book  Google Scholar 

  6. 6.

    Wang MQ, Yan SL, Li WH, Wu B, Feng R, Liu BG. A study on Chinese herb of cold and hot on SD Rats. J Zhejiang Coll TCM. 2002;6:1417–21.

    Google Scholar 

  7. 7.

    Yu MH, Zhou HZ, Xiao XH, Liu TS, Yuan HL, Zhao YL, Gao XS. Advances and prospects of four properties of Chinese traditional medicine. Chin J Basic Med TCM. 2001;8:61–4.

    Google Scholar 

  8. 8.

    Baliga MS, Haniadka R, Pereira MM, D’Souza JJ, Pallaty PL, Bhat HP, Popuri S. Update on the chemopreventive effects of ginger and its phytochemicals. Crit Rev Food Sci Nutr. 2011;51(6):499–523.

    CAS  Article  Google Scholar 

  9. 9.

    Shukla Y, Singh M. Cancer preventive properties of ginger: a brief review. Food Chem Toxicol. 2007;45:683–90.

    CAS  Article  Google Scholar 

  10. 10.

    Kim JS, Lee SI, Park HW, Yang JH, Shin TY, Kim YC, Baek NI, Kim SH, Choi SU, Kwon BM, Leem KH, Jung MY, Kim DK. Cytotoxic components from the dried rhizomes of Zingiber officinale Roscoe. Arch Pharm Res. 2008;31(4):415–8.

    CAS  Article  Google Scholar 

  11. 11.

    Katiyar SK, Agarwal R, Mukhtar H. Inhibition of tumor promotion in SENCAR mouse skin by ethanol extract of Zingiber officinale rhizome. Cancer Res. 1996;56:1023–30.

    CAS  Google Scholar 

  12. 12.

    Surh YJ. Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities: a short review. Food Chem Toxicol. 2002;40:1091–7.

    CAS  Article  Google Scholar 

  13. 13.

    Lee J. Mitochondrial drug targets in neurodegenerative diseases. Bioorg Med Chem Lett. 2016;26(3):714–20.

    CAS  Article  Google Scholar 

  14. 14.

    Sommer AP, Mester AR, Trelles MA. Tuning the mitochondrial rotary motor with light. Ann Transl Med. 2015;3(22):346.

    Google Scholar 

  15. 15.

    Kazak L, Chouchani ET, Jedrychowski MP, Erickson BK, Shinoda K, Cohen P, Vetrivelan R, Lu GZ, Laznik-Bogoslavski D, Hasenfuss SC, Kajimura S, Gygi SP, Spiegelman BM. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell. 2015;163(3):643–55.

    CAS  Article  Google Scholar 

  16. 16.

    Miyamoto M, Matsuzaki K, Katakura M, Hara T, Tanabe Y, Shido O. Oral intake of encapsulated dried ginger root powder hardly affects human thermoregulatory function, but appears to facilitate fat utilization. Int J Biometeorol. 2015;59(10):1461–74.

    Article  Google Scholar 

  17. 17.

    Zick SM, Djuric Z, Ruffin MT, Litzinger AJ, Normolle DP, Alrawi S, Feng MR, Brenner DE. Pharmacokinetics of 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogaol and conjugate metabolites in healthy human subjects. Cancer Epidemiol Biomarkers Prev. 2008;17(8):1930–6.

    CAS  Article  Google Scholar 

  18. 18.

    Kundu JK, Na HK, Surh YJ. Ginger-derived phenolic substances with cancer preventive and therapeutic potential. Forum Nutr. 2009;61:182–92.

    CAS  Article  Google Scholar 

  19. 19.

    Lee SH, Cekanova M, Baek SJ. Multiple mechanisms are involved in 6-gingerol-induced cell growth arrest and apoptosis in human colorectal cancer cells. Mol Carcinog. 2008;47:197–208.

    CAS  Article  Google Scholar 

  20. 20.

    Pan MH, Hsieh MC, Kuo JM, Lai CS, Wu H, Sang S, Ho CT. 6-Shogaol induces apoptosis in human colorectal carcinoma cells via ROS production, caspase activation, and GADD 153 expression. Mol Nutr Food Res. 2008;52:527–37.

    CAS  Article  Google Scholar 

  21. 21.

    Isa Y, Miyakawa Y, Yanagisawa M, Goto T, Kang MS, Kawada T, Morimitsu Y, Kubota K, Tsuda T. 6-Shogaol and 6-gingerol, the pungent of ginger, inhibit TNF-alpha mediated downregulation of adiponectin expression via different mechanisms in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2008;373(3):429–34.

    CAS  Article  Google Scholar 

  22. 22.

    Semwal RB, Semwal DK, Combrinck S, Viljoen AM. Gingerols and shogaols: important nutraceutical principles from ginger. Phytochemistry. 2015;117:554–68.

    CAS  Article  Google Scholar 

  23. 23.

    Fleming SA, Dyer CW, Eggington J. A convenient one-step gingerol synthesis. Synth Commun. 1999;29:1933–9.

    CAS  Article  Google Scholar 

  24. 24.

    Seon Ok, Woo-Sik Jeong. Optimization of extraction conditions for the 6-shogaol-rich extract from ginger (Zingiber officinale Roscoe). Prev Nutr Food Sci. 2012;17(2):166–71.

    Article  Google Scholar 

  25. 25.

    Flores D, Panic G, Braissant O, Keiser J. A novel isothermal microcalorimetry tool to assess drug effects on Ancylostoma ceylanicum and Necator americanus. Appl Microbiol Biotechnol. 2016;100(2):837–46.

    CAS  Article  Google Scholar 

  26. 26.

    Kong WJ, Xing XY, Xiao XH, Zhao YL, Wei JH, Wang JB, Yang RC, Yang MH. Effect of berberine on Escherichia coli, Bacillus subtilis, and their mixtures as determined by isothermal microcalorimetry. Appl Microbiol Biotechnol. 2012;96(2):503–10.

    CAS  Article  Google Scholar 

  27. 27.

    Wenzler T, Steinhuber A, Wittlin S, Scheurer C, Brun R, Trampuz A. Isothermal microcalorimetry, a new tool to monitor drug action against Trypanosoma brucei and Plasmodium falciparum. PLoS Negl Trop Dis. 2012;6(6):e1668.

    CAS  Article  Google Scholar 

  28. 28.

    Furustrand TU, Clauss M, Hauser PM, Bille J, Meis JF, Trampuz A. Isothermal microcalorimetry: a novel method for real-time determination of antifungal susceptibility of Aspergillus species. Clin Microbiol Infect. 2012;18(7):E241–5.

    Article  Google Scholar 

  29. 29.

    Feng X, Yan D, Zhao KJ, Luo JY, Ren YS, Kong WJ, Han YM, Xiao XH. Applications of microcalorimetry in the antibacterial activity evaluation of various Rhizoma coptidis. Pharm Biol. 2011;49(4):348–53.

    CAS  Article  Google Scholar 

  30. 30.

    Zhao YL, Wei SS, Wang JB, Zhang P, Li RS, Xiao XH. Microcalorimetry coupled with principal component analysis for comparing the effects of two Panax species on mice splenic lymphocytes. J Therm Anal Calorim. 2011;111(3):1169–74.

    Google Scholar 

  31. 31.

    Zhu JC, Li CH, Liu Y, Zhang ZH, Hou AX, Qu SS. A microcalorimetric study of the action of mercuric chloride on the metabolism of mitochondria isolated from Cyprinus carpio liver tissue. J Therm Anal Calorim. 2006;83(1):181–6.

    CAS  Article  Google Scholar 

  32. 32.

    Zheng QF, Li RS, Li CY, Zhao YL, Wang Y, Wang JB, Wang RL, Zhang YM, Liu HH, Li JY, Xiao XH. Microcalorimetric investigation of five Aconitum L. plants on the metabolic activity of mitochondria isolated from rat liver. J Therm Anal Calorim. 2014;120(1):335–44.

    Article  Google Scholar 

Download references


We are grateful for the support of the National Natural Sciences Foundation (No. 81573631).

Author information



Corresponding authors

Correspondence to Dan Yan or YanLing Zhao or Xiaohe Xiao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Zhang, D., Zhang, Y. et al. Thermal activities of 6-gingerol, 8-gingerol and 6-shogaol on the potentiation of mitochondria thermogenesis based on microcalorimetry. J Therm Anal Calorim 127, 1787–1795 (2017).

Download citation


  • 6-Gingerol
  • Thermal activity
  • Mitochondria thermogenesis
  • Microcalorimetry