Skip to main content
Log in

The effects of boron addition on the magnetic and mechanical properties of NiMnSn shape memory alloys

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effects of boron addition on the microstructure, magnetic, mechanical, and shape memory properties of Ni50Mn40−xSn10Bx (at.%) (x = 1, 2, 3, 4, 6, 8) polycrystalline alloys were systematically investigated. It was revealed that transformation temperatures, magnetic behavior, mechanical, and shape memory properties can be tailored by B content. Transformation temperatures were decreased while saturation magnetization was increased with the addition of boron. In addition to magnetic behavior, ferromagnetic austenite transforms to weakly magnetic martensite, and then, martensite becomes ferromagnetic during cooling. The low amount of B addition (up to 4 %) to NiMnSn creates the second phase which provides higher strength and ductility. However, the high volume fraction of the second phase reduces the shape recovery because the phase transformation does not occur in the second phase. Brittleness takes place when the B amount is more than 6 % in NiMnSnB alloys. The amount of boron content in the NiMnSnB alloys plays a significant role to modify the magnetic, mechanical, and shape memory properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, et al. Magnetic-field-induced shape recovery by reverse phase transformation. Nature. 2006;439(7079):957–60.

    Article  CAS  Google Scholar 

  2. Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K, et al. Magnetic and martensitic transformations of NiMnX (X = In, Sn, Sb) ferromagnetic shape memory alloys. Appl Phys Lett. 2004;85(19):4358–60.

    Article  CAS  Google Scholar 

  3. Karaca HE, Karaman I, Basaran B, Lagoudas DC, Chumlyakov YI, Maier HJ. One-way shape memory effect due to stress-assisted magnetic field-induced phase transformation in Ni2MnGa magnetic shape memory alloys. Scripta Mater. 2006;55(9):803–6. doi:10.1016/j.scriptamat.2006.07.025.

    Article  CAS  Google Scholar 

  4. Planes A, Mañosa L, Acet M. Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys. J Phys Condens Matter. 2009;21(23):233201.

    Article  Google Scholar 

  5. Pasquale M, Sasso C, Giudici L, Lograsso T, Schlagel D. Field-driven structural phase transition and sign-switching magnetocaloric effect in Ni–Mn–Sn. Appl Phys Lett. 2007;91(13):131904.

    Article  Google Scholar 

  6. Krenke T, Duman E, Acet M, Wassermann EF, Moya X, Mañosa L, et al. Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nat Mater. 2005;4(6):450–4.

    Article  CAS  Google Scholar 

  7. Koyama K, Okada H, Watanabe K, Kanomata T, Kainuma R, Ito W, et al. Observation of large magnetoresistance of magnetic Heusler alloy Ni50Mn36Sn14 in high magnetic fields. Appl Phys Lett. 2006;89(18):182510.

    Article  Google Scholar 

  8. Pathak AK, Dubenko I, Karaca HE, Stadler S, Ali N. Large inverse magnetic entropy changes and magnetoresistance in the vicinity of a field-induced martensitic transformation in Ni50 − xCoxMn32 − yFeyGa18. Appl Phys Lett. 2010;97(6):062505. doi:10.1063/1.3467460.

    Article  Google Scholar 

  9. Zhang B, Zhang X, Yu S, Chen J, Cao Z, Wu G. Giant magnetothermal conductivity in the Ni–Mn–In ferromagnetic shape memory alloys. Appl Phys Lett. 2007;91(1):012510.

    Article  Google Scholar 

  10. Castillo-Villa PO, Mañosa L, Planes A, Soto-Parra DE, Sanchez-Llamazares J, Flores-Zuniga H, et al. Elastocaloric and magnetocaloric effects in Ni–Mn–Sn (Cu) shape-memory alloy. J Appl Phys. 2013;113(5):053506.

    Article  Google Scholar 

  11. Turabi AS, Karaca HE, Tobe H, Basaran B, Aydogdu Y, Chumlyakov YI. Shape memory effect and superelasticity of NiMnCoIn metamagnetic shape memory alloys under high magnetic field. Scripta Mater. 2016;111:110–3. doi:10.1016/j.scriptamat.2015.08.027.

    Article  CAS  Google Scholar 

  12. Karaca HE, Karaman I, Basaran B, Chumlyakov YI, Maier HJ. Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals. Acta Mater. 2006;54(1):233–45. doi:10.1016/j.actamat.2005.09.004.

    Article  CAS  Google Scholar 

  13. Karaca HE, Karaman I, Brewer A, Basaran B, Chumlyakov YI, Maier HJ. Shape memory and pseudoelasticity response of NiMnCoIn magnetic shape memory alloy single crystals. Scripta Mater. 2008;58(10):815–8. doi:10.1016/j.scriptamat.2007.12.029.

    Article  CAS  Google Scholar 

  14. Karaca HE, Karaman I, Basaran B, Ren Y, Chumlyakov YI, Maier HJ. Magnetic field-induced phase transformation in NiMnCoIn magnetic shape-memory alloys—A new actuation mechanism with large work output. Adv Funct Mater. 2009;19(7):983–98. doi:10.1002/adfm.200801322.

    Article  CAS  Google Scholar 

  15. Chen F, Wang H, Zheng Y, Cai W, Zhao L. Effect of Fe addition on transformation temperatures and hardness of NiMnGa magnetic shape memory alloys. J Mater Sci. 2005;40(1):219–21.

    Article  CAS  Google Scholar 

  16. Wu Z, Liu Z, Yang H, Liu Y, Wu G, Woodward RC. Metallurgical origin of the effect of Fe doping on the martensitic and magnetic transformation behaviours of Ni 50 Mn 40−x Sn 10 Fe x magnetic shape memory alloys. Intermetallics. 2011;19(4):445–52.

    Article  Google Scholar 

  17. Ma Y, Xu L, Li Y, Jiang C, Xu H, Lee Y-K. Martensitic transformation, ductility, and shape-memory effect of polycrystalline Ni56Mn25–xFexGa19 alloys. Zeitschrift für Metallkunde. 2005;96(8):843–46.

    Article  CAS  Google Scholar 

  18. Karaca H, Turabi A, Basaran B, Pathak A, Dubenko I, Ali N et al. Compressive response of polycrystalline NiCoMnGa high-temperature meta-magnetic shape memory alloys. J. Mater Eng Perform. 2013;22(10):3111–4.

    Article  CAS  Google Scholar 

  19. Ma Y, Yang S, Liu Y, Liu X. The ductility and shape-memory properties of Ni–Mn–Co–Ga high-temperature shape-memory alloys. Acta Mater. 2009;57(11):3232–41.

    Article  CAS  Google Scholar 

  20. Wang J, Jiang C. A single-phase wide-hysteresis shape memory alloy Ni 50 Mn 25 Ga 17 Cu 8. Scripta Mater. 2010;62(5):298–300.

    Article  CAS  Google Scholar 

  21. Ma Y, Yang S, Jin W, Liu X. Ni 56 Mn 25−x Cu × Ga 19 (x = 0, 1, 2, 4, 8) high-temperature shape-memory alloys. J Alloy Compd. 2009;471(1):570–4.

    Article  CAS  Google Scholar 

  22. Cong D, Roth S, Pötschke M, Hürrich C, Schultz L. Phase diagram and composition optimization for magnetic shape memory effect in Ni–Co–Mn–Sn alloys. Appl Phys Lett. 2010;97:021908.

    Article  Google Scholar 

  23. Bachaga T, Daly R, Suñol J, Saurina J, Escoda L, Legarreta L, et al. Effects of Co additions on the martensitic transformation and magnetic properties of Ni–Mn–Sn shape memory alloys. J Supercond Novel Magn. 2015;28(10):3087–92.

    Article  CAS  Google Scholar 

  24. Suzuki Y, Xu Y, Morito S, Otsuka K, Mitose K. Effects of boron addition on microstructure and mechanical properties of Ti–Td–Ni high-temperature shape memory alloys. Mater Lett. 1998;36(1):85–94.

    Article  CAS  Google Scholar 

  25. Yang WS, Mikkola D. Ductilization of Ti–Ni–Pd shape memory alloys with boron additions. Scr Metall Mater. 1993;28(2):161–5.

    Article  CAS  Google Scholar 

  26. Kök M, Yakinci Z, Aydogdu A, Aydogdu Y. Thermal and magnetic properties of Ni51Mn28. 5Ga19. 5B magnetic-shape-memory alloy. J Therm Anal Calorim. 2014;115(1):555–9.

    Article  Google Scholar 

  27. Gautam BR, Dubenko I, Pathak AK, Stadler S, Ali N. The structural and magnetic properties of Ni2 Mn1−x B x Ga Heusler alloys. J Magn Magn Mater. 2009;321(1):29–33.

    Article  CAS  Google Scholar 

  28. Gautam BR, Dubenko I, Pathak AK, Stadler S, Ali N. Effect of isoelectronic substitution on magnetic properties of Ni(2)Mn(GaB) Heusler alloys. J Phys-Condens Matter. 2008;20(46):5. doi:10.1088/0953-8984/20/46/465209.

    Article  Google Scholar 

  29. Aydogdu Y, Turabi AS, Kok M, Aydogdu A, Tobe H, Karaca HE. Effects of the substitution of gallium with boron on the physical and mechanical properties of Ni–Mn–Ga shape memory alloys. Appl Phys A. 2014;117(4):2073–8.

    Article  CAS  Google Scholar 

  30. Luo H, Meng F, Jiang Q, Liu H, Liu E, Wu G, et al. Effect of boron on the martensitic transformation and magnetic properties of Ni 50 Mn 36.5 Sb 13.5 − xBx alloys. Scripta Mater. 2010;63(6):569–72.

    Article  CAS  Google Scholar 

  31. Ramudu M, Satish Kumar A, Seshubai V. Influence of boron addition on the microstructure, structural and magnetic properties of Ni 53.5 Mn 26.0 Ga 20.5 alloy. Intermetallics. 2012;28:51–7.

    Article  CAS  Google Scholar 

  32. Xuan H, Wang D, Zhang C, Han Z, Gu B, Du Y. Boron’s effect on martensitic transformation and magnetocaloric effect in Ni43Mn46Sn11Bx alloys. Appl Phys Lett. 2008;92(10):2503.

    Article  Google Scholar 

  33. Aydogdu Y, Turabi AS, Kok M, Aydogdu A, Yakinci ZD, Aksan MA et al. The effect of Sn content on mechanical, magnetization and shape memory behavior in NiMnSn alloys. J Alloys Compd. 2016;683:339–45.

    Article  CAS  Google Scholar 

  34. Zimm C, Jastrab A, Sternberg A, Pecharsky V, Gschneidner Jr K, Osborne M et al. Description and performance of a near-room temperature magnetic refrigerator. Adv Cryog Eng. 1998:1759–66.

  35. Khovaylo V, Skokov K, Gutfleisch O, Miki H, Kainuma R, Kanomata T. Reversibility and irreversibility of magnetocaloric effect in a metamagnetic shape memory alloy under cyclic action of a magnetic field. Appl Phys Lett. 2010;97(5):052503.

    Article  Google Scholar 

  36. Chernenko V. Compositional instability of β-phase in Ni–Mn–Ga alloys. Scripta Mater. 1999;40(5):523–7.

    Article  CAS  Google Scholar 

  37. Marcos J, Mañosa L, Planes A, Casanova F, Batlle X, Labarta A. Multiscale origin of the magnetocaloric effect in Ni–Mn–Ga shape-memory alloys. Phys Rev B. 2003;68(9):094401.

    Article  Google Scholar 

  38. Bachaga T, Daly R, Escoda L, Sunol J, Khitouni M. Influence of chemical composition on martensitic transformation of MnNiIn shape memory alloys. J Therm Anal Calorim. 2015;122(1):167–73.

    Article  CAS  Google Scholar 

  39. Pauling L. Atomic radii and interatomic distances in metals. J Am Chem Soc. 1947;69(3):542–53.

    Article  CAS  Google Scholar 

  40. Glavatskyy I, Glavatska N, Dobrinsky A, Hoffmann J-U, Söderberg O, Hannula S-P. Crystal structure and high-temperature magnetoplasticity in the new Ni–Mn–Ga–Cu magnetic shape memory alloys. Scripta Mater. 2007;56(7):565–8.

    Article  CAS  Google Scholar 

  41. Zheng H, Xia M, Liu J, Huang Y, Li J. Martensitic transformation of (Ni 55.3 Fe 17.6 Ga 27.1) 100 − x Co x magnetic shape memory alloys. Acta Mater. 2005;53(19):5125–9.

    Article  CAS  Google Scholar 

  42. Glavatskyy I, Glavatska N, Söderberg O, Hannula S-P, Hoffmann J-U. Transformation temperatures and magnetoplasticity of Ni–Mn–Ga alloyed with Si, In, Co or Fe. Scripta Mater. 2006;54(11):1891–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by TUBITAK under Project No: 113F234 and National Science Foundation (NSF) CMMI award #0954541.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Aydogdu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydogdu, Y., Turabi, A.S., Aydogdu, A. et al. The effects of boron addition on the magnetic and mechanical properties of NiMnSn shape memory alloys. J Therm Anal Calorim 126, 399–406 (2016). https://doi.org/10.1007/s10973-016-5576-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5576-6

Keywords

Navigation