Skip to main content
Log in

Thermal hazard assessment of 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazaisowutrzitane (TEX) by accelerating rate calorimeter (ARC)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal decomposition behaviors of 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazaisowutrzitane (TEX) were studied by using accelerating rate calorimetry to achieve the hazard assessment of TEX explosive, and the kinetic parameters were studied from the measured self-heating rate data by assuming a zero-order reaction. Moreover, the specific heat capacity date of TEX was obtained from differential scanning calorimetry. These results could be contributed to improve the safety in the reaction, transportation, and storage processes of TEX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

Φ :

Thermal inertia factor

T 0/°C:

Initial self-heat temperature

T f/°C:

Final decomposition temperature

ΔT ad/°C:

Adiabatic temperature rise

m 0 /°C min−1 :

Initial temperature rise rate

m m /°C min−1 :

Maximum temperature rise rate

T m/°C:

Temperature of maximum temperature rise rate

Θ m/min:

Time of maximum temperature rise rate

E a/kJ mol−1 :

The apparent activation energy

R :

The gas constant

A :

Pre-exponential factor

References

  1. Sikder AK, Sikder N. A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J Hazard Mater. 2004;112:1–15.

    Article  CAS  Google Scholar 

  2. Millar RW, Philbin SP, Claridge RP, Hamid J. Studies of novel heterocyclic insensitive high explosive compounds: pyridines, pyrimidines, pyrazines and their bicyclic analogues. Propellants, Explos, Pyrotech. 2004;29:81–92.

    Article  CAS  Google Scholar 

  3. Chapman RD, Wilson WS, Fronabarger JW, Merwin LH, Ostrom GS. Prospects of fused polycyclic nitroazines as thermally insensitive energetic materials. Thermochim Acta. 2002;384:229–43.

    Article  CAS  Google Scholar 

  4. Singh RP, Verma RD, Meshri DT, Shreeve JM. Energetic nitrogen-rich salts and ionic liquids. Angew Chem Int Ed. 2006;45:3584–601.

    Article  CAS  Google Scholar 

  5. Zhu J, Jin S, Wan L, Zhang C, Li L, Chen S, Shu Q. Nitrogen-rich 4,4′-azo bis(1,2,4-triazolone) salts—the synthesis and promising properties of a new family of high-density insensitive materials. Dalton Trans. 2016;45:3590–8.

    Article  CAS  Google Scholar 

  6. Zhang J, Shreeve JM. 3,3′-initroamino-4,4′-zoxyfurazan and its derivatives: an assembly of diverse N–O building blocks for high-performance energetic materials. J Am Chem Soc. 2014;136:4437–45.

    Article  CAS  Google Scholar 

  7. Thottempudi V, Yin P, Zhang J, Parrish DA, Shreeve JM. 1,2,3-triazolo[4,5,-e]furazano[3,4,-b]pyrazine 6-oxide—a fused heterocycle with a roving hydrogen forms a new class of insensitive energetic materials. Chem Eur J. 2014;20:542–8.

    Article  CAS  Google Scholar 

  8. Gao H, Shreeve JM. Azole-based energetic salts. Chem Rev. 2011;111:7377–436.

    Article  CAS  Google Scholar 

  9. Thottempudi V, Gao H, Shreeve JM. Trinitromethyl-substituted 5-nitro- or 3-azo-1,2,4-triazoles: synthesis, characterization, and energetic properties. J Am Chem Soc. 2011;133:6464–71.

    Article  CAS  Google Scholar 

  10. Wang R, Xu H, Guo Y, Sa R, Shreeve JM. Bis[3-(5-nitroimino- 1,2,4-triazolate)]-based energetic salts: synthesis and promising properties of a new family of high-density insensitive materials. J Am Chem Soc. 2010;132:11904–5.

    Article  CAS  Google Scholar 

  11. Fischer N, Fischer D, Klapötke TM, Piercey DG, Stierstorfer J. Pushing the limits of energetic materials—the synthesis and characterization of dihydroxylammonium 5,5′-bistetrazole-1,1′- diolate. J Mater Chem. 2012;22:20418–22.

    Article  CAS  Google Scholar 

  12. Dippold AA, Klapötke TM. A study of dinitro-bis-1,2,4-triazole-1,1′-diol and derivatives: design of high-performance insensitive energetic materials by the introduction of N-Oxides. J Am Chem Soc. 2013;135:9931–8.

    Article  CAS  Google Scholar 

  13. Koch EC. TEX-4,10-dinitro-2,6,8,12-tetrapxa-4.10-diazatetracyclo[5.5.0.0.5,9.03.11]-dodecane-review of a promising high density insensitive energetic material. Propellants, Explos, Pyrotech. 2015;40:374–87.

    Article  CAS  Google Scholar 

  14. Xiao LB, Zhao FQ, Luo Y, Gao HX, Li N, Meng ZH, Hu RZ. Thermal behavior and safety of 4,10-dinitro- 2,6,8,12-tetrapxa-4.10-diazaisowutrzitane. J Therm Anal Calorim. 2015;121:839–42.

    Article  CAS  Google Scholar 

  15. Lei YP, Xu SL, Yang SQ, Zhang T. Progress in high energetic explosive: TEX. Chin J Energ Mater. 2006;6:467–70.

    Google Scholar 

  16. Vagenknecht J. TEX—a lova explosive. Chin J Energ Mater. 2008;8:56–9.

    Google Scholar 

  17. Vagenknecht J, Marecek P, Trzcinski W. Sensitivity and performance properties of TEX explosive. J Energ Mater. 2002;20:245–53.

    Article  CAS  Google Scholar 

  18. Wang R, Meng ZH, Xue M, Xu ZB, Cui KJ, Zhao FQ, Xiao LB, Guo Q. Compatibility of high energetic explosive TEX with components of propellants by DSC method. Chin J Explos Propellants. 2015;38:66–9.

    Google Scholar 

  19. Li YC, Yan S, Cheng Y. Thermal decomposition kinetics of RDX by TG-DSC-QMS-FTIR. Chin J Explos Propellants. 2009;32:32–5.

    CAS  Google Scholar 

  20. Tang Z, Yang L, Qiao XJ, Zhang TL, Yu WF. On thermal decomposition kinetics and thermal safety of HMX. Chin J Energ Mater. 2011;19:396–400.

    CAS  Google Scholar 

  21. Fung V, Morris J, Price D, Tucker N, Claire EL, Carrillo A. Further development and optimization of IM ingredients at Holston army ammunition plant. In: Insensitive munitions and energetic materials technology symposium. Munich, Germany; 2010.

  22. Zeng XL, Ju XH, Gao HX. Theoretical study of 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diaza-tetracyclododecane (TEX). Adv Mater Res. 2012;554–556:1618–23.

    Article  Google Scholar 

  23. Townsend DI, Tou JC. Thermal hazard evaluation by an accelerating rate calorimeter. Thermochim Acta. 1980;37:1–30.

    Article  CAS  Google Scholar 

  24. Tou JC, Whiting LF. The thermokinetic performance of an accelerating rate calorimeter. Thermochim Acta. 1981;48:21–42.

    Article  CAS  Google Scholar 

  25. Lu KT, Yang CC, Lin PC. The criteria of critical runaway and stable temperatures of catalytic decomposition of hydrogen peroxide in the presence of hydrochloric acid. J Hazard Mater. 2006;135:319–27.

    Article  CAS  Google Scholar 

  26. Fu ZM, Koseki H, Iwata Y. Investigation on thermal stability of flavianic acid disodium salt. J Loss Prevent Proc. 2009;22:477–83.

    Article  CAS  Google Scholar 

  27. Liu HP, Gu LY, Zhu P, Liu ZR, Zhou B. Effect of micro amount of Fe3+ on thermal explosion decomposition of hydrogen peroxide. Fire Sci Tech. 2012;31:554–7.

    CAS  Google Scholar 

  28. Zuo YF, Chang K, Chen J, Cheng KM, Wang XF, Fang YX. Characteristics of thermal decomposition of TEX. Chin J Energ Mater. 2006;14:387–8.

    Google Scholar 

  29. Liu Y, Yang Q, Chen LP, He ZQ, Lu Y, Chen WH. Thermal sensitivity of energetic materials characterized by accelerating rate calorimeter (ARC). Chin J Energ Mater. 2011;19:656–60.

    Google Scholar 

  30. Zuo YF, Xu R, Chang K, Peng Q, Liu JB. Influence of RDX and HMX on the thermal stability of TEX. J Energ Mater. 2005;13:110–2.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghai Shu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Jin, S., Li, L. et al. Thermal hazard assessment of 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazaisowutrzitane (TEX) by accelerating rate calorimeter (ARC). J Therm Anal Calorim 126, 467–471 (2016). https://doi.org/10.1007/s10973-016-5567-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5567-7

Keywords

Navigation