Skip to main content
Log in

Influence of ceria and yttria on the protective properties of SiO2–Al2O3 coatings deposited by sol–gel method on FeCrAl alloy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Three-layer Y2O3, CeO2, SiO2–Al2O3 and SiO2–Al2O3–Y2O3–CeO2 coatings were deposited by sol–gel method on the FeCrAl alloy foil substrate. The protective properties of the coatings during high-temperature cyclic oxidation and the changes in the topography of the surface, the structure, and chemical composition of the FeCrAl alloy surface layer were examined. It has been shown that small additions of cerium and yttrium affect the morphology of the growing Al2O3 scale. After 10 oxidation cycles in air (T = 900 °C, t = 120 h, one cycle = 12 h), the smallest change in the mass of the samples was observed for Y2O3 and SiO2–Al2O3–Y2O3–CeO2 coatings with an appropriate yttrium and cerium content. The protection effectiveness of the coatings to that of uncoated substrate after 10 oxidation cycles ranges from 28 to 66 %. The oxidation scale thickness (h) and the designated value of the parabolic rate constant (k p) depended on the yttrium and cerium content in the coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stott FH, Wood GC. Growth and adhesion of oxide scales on Al2O3-forming alloys and coatings. Mater Sci Eng. 1987;87:267–74.

    Article  CAS  Google Scholar 

  2. Golightly FA, Wood GC, Stott FH. The early stages of development of alpha-Al2O3 on Fe–Cr–Al and Fe–Cr–Al–Y alloys at high temperature. Oxid Met. 1980;14:217–34.

    Article  CAS  Google Scholar 

  3. Kochubey V, Al-Badairy H, Tatlock G, Le Coze J, Naumenko D, Quadakkers WJ. Effects of minor additions and impurities on oxidation behavior of FeCrAl alloys. Development of novel surface coatings compositions. Mater Corros. 2005;56:848–53.

    Article  CAS  Google Scholar 

  4. Tolpygo VK. Segregation at Al2O3-FeCrAl interface during high temperature oxidation. Oxid Met. 1999;51:449–74.

    Article  CAS  Google Scholar 

  5. Pint BA, Martin JR, Hobbs LW. The oxidation mechanism of θ-Al2O3 scales. Solid State Ion. 1995;78:99–107.

    Article  CAS  Google Scholar 

  6. Pint BA, Garratt-Reed AJ, Hobbs LW. The reactive element effect in commercial ODS FeCrAl alloys. Mater High Temp. 1995;13(1):3–15.

    Article  CAS  Google Scholar 

  7. Amano T. Rare earth application for heat-resisting alloys. J Rare Earths. 2010;28:12–21.

    Article  Google Scholar 

  8. Pint BA, More KL, Wright IG. The use of two reactive elements to optimize oxidation performance of alumina-forming alloys. Mater High Temp. 2003;20:375–86.

    Article  CAS  Google Scholar 

  9. Amano T, Isobe H, Yamada K, Shishido T. The morphology of alumina scales formed on Fe-20Cr-4Al-S alloys with reactive element (Y, Hf) additions at 1273 K. Mater High Temp. 2003;20:387–93.

    CAS  Google Scholar 

  10. Fukuda K, Takao K, Hoshi T, Usui Y, Furuki O. Improvement of high temperature oxidation resistance of rare earth metaladded Fe-20% Cr-5% Al alloys by pre-annealing treatment. Mater High Temp. 2003;20:319–26.

    Article  CAS  Google Scholar 

  11. Peng X, Guan Y, Dong Z, Xu C, Wang F. A fundamental aspect of the growth process of alumina scale on a metal with dispersion of CeO2 nanoparticles. Corros Sci. 2011;53:1954–9.

    Article  CAS  Google Scholar 

  12. Jin HM, Liu XJ, Zhang LN. Influence of nanometric ceria coating on oxidation behavior of chromium at 900 °C. J Rare Earths. 2007;25(1):63–7.

    Article  Google Scholar 

  13. Houngniou C, Chevalier S, Larpin JP. High-temperature-oxidation behavior of iron-aluminide diffusion coatings. Oxid Met. 2006;65:409–39.

    Article  CAS  Google Scholar 

  14. Yu X, Sun Y. The oxidation improvement of Fe3Al based alloy with cerium addition at temperature above 1000 °C. Mater Sci Eng A. 2003;363:30–9.

    Article  Google Scholar 

  15. Chen CL, Dong YM. Effect of mechanical alloying and consolidation process on microstructure and hardness of nanostructured Fe–Cr–Al ODS alloys. Mater Sci Eng A. 2011;528:8374–80.

    Article  CAS  Google Scholar 

  16. Montealegrea MA, Strehlb G, Gonzalez-Carrascoa JL, Borchardt G. Oxidation behaviour of novel ODS FeAlCr intermetallic alloys. Intermetallics. 2005;13:896–906.

    Article  Google Scholar 

  17. Chevalier S, Nivot C, Larpin JP. Influence of reactive element oxide coatings on the high temperature oxidation behavior of alumina-forming alloys. Oxid Met. 2004;61:195–217.

    Article  CAS  Google Scholar 

  18. Sharma SK, Ko GD, Kang KJ. High temperature creep and tensile properties of alumina formed on Fecralloy foils doped with yttrium. J Eur Ceram Soc. 2009;29:355–62.

    Article  CAS  Google Scholar 

  19. Brady M, Yamamoto Y, Santella ML, Pint BA. Effects of minor alloy additions and oxidation temperature on protective alumina scale formation in creep-resistant austenitic stainless steels. Scr Mater. 2007;57:1117–20.

    Article  CAS  Google Scholar 

  20. Badini C, Laurella F. Oxidation of FeCrAl alloy: influence of temperature and atmosphere on scale growth rate and mechanism. Surf Coat Technol. 2001;135:291–8.

    Article  CAS  Google Scholar 

  21. Sundararajan T, Kuroda S, Kawakita J, Seal S. High temperature corrosion of nanoceria coated 9Cr-1Mo ferritic steel in air and steam. Surf Coat Technol. 2006;201:2124–30.

    Article  CAS  Google Scholar 

  22. Chęcmanowski JG, Szczygieł B. High temperature oxidation resistance of FeCrAl alloys covered with ceramic SiO2–Al2O3 coatings deposited by sol–gel method. Corros Sci. 2008;50:3581–9.

    Article  Google Scholar 

  23. Chęcmanowski JG, Szczygieł B, Tylus W, Szczygieł I. High-temperature oxidation resistance of FeCrAl alloys coated with silica-rich ceramic SiO2–Al2O3 deposited by sol–gel method. Mater Chem Phys. 2011;126:409–16.

    Article  Google Scholar 

  24. Chęcmanowski JG, Szczygieł B. Effect of a ZrO2 coating deposited by the sol-gel method on the resistance of FeCrAl alloy in high-temperature oxidation conditions. Mater Chem Phys. 2013;139(2–3):944–52.

    Article  Google Scholar 

  25. Hou PY, Shui ZR, Chuang GY, Stringer J. Effect of reactive element oxide coatings on the high temperature oxidation behavior of a FeCrAl alloy. J Electrochem Soc. 1992;139:1119–26.

    Article  CAS  Google Scholar 

  26. Mennicke C, Schumann E, Ruhle M, Hussey RJ, Sproule GI, Graham MJ. The effect of yttrium on the growth process and microstructure of α-Al2O3 on FeCrAl. Oxid Met. 1998;49:455–66.

    Article  CAS  Google Scholar 

  27. Wolff IM, Iorio LE, Rumpf T, Scheers PVT, Potgieter JH. Oxidation and corrosion behaviour of Fe–Cr and Fe–Cr–Al alloys with minor alloying additions. Mater Sci Eng A. 1998;241:264–76.

    Article  Google Scholar 

  28. Ishii K, Taniguchi S. Effect of La and Hf additions on the high-temperature oxidation resistance of high-purity Fe-20Cr-5Al alloy foils. Oxid Met. 2000;54:491–508.

    Article  CAS  Google Scholar 

  29. Merceron G, Molins R, Strudel JL. Oxidation behaviour and microsctructure evolution of FeCrAl ODS alloys at high temperature. Mater High Temp. 2000;17:149–57.

    Article  CAS  Google Scholar 

  30. Chevalier S, Strehl G, Buscail H, Borchardt G, Larpin JP. Influence of the mode of introduction of a reactive element on the high temperature oxidation behavior of an alumina-forming alloy. Part II. Cyclic oxidation tests. Mater Corros. 2004;55(8):610–6.

    Article  CAS  Google Scholar 

  31. Unocic KA, Parish CM, Pint BA. Characterization of the alumina scale formed on coated and uncoated doped superalloys. Surf Coat Technol. 2011;206:1522–8.

    Article  CAS  Google Scholar 

  32. Shao M, Cui L, Zheng Y, Xing L. Effect of cerium addition on oxidation behavior of 25Cr20Ni alloy under low oxygen partial pressure. J Rare Earths. 2012;30(2):164–9.

    Article  CAS  Google Scholar 

  33. Chęcmanowski J, Matraszek A, Szczygieł I, Szczygieł B. High-temperature oxidation of FeCrAl alloy with alumina-silica-ceria coatings deposited by sol–gel method. J Therm Anal Calorim. 2013;113:311–8.

    Article  Google Scholar 

  34. Tang S, Zhu S, Tang X, Pan H, Chen X, Xiang ZD. Influence of Al on scale formation and growth kinetics of 10 wt% Cr creep resistant ferritic steels at 650 °C in air. Corros Sci. 2014;80:374–82.

    Article  CAS  Google Scholar 

  35. Szczygieł I, Matraszek A, Chęcmanowski J, Szczygieł B. Thermal behaviour of mixed alumina-silica gels obtained from alkoxides: phase formation and morphology of powders. J Non-Cryst Solids. 2010;356:2824–30.

    Article  Google Scholar 

  36. Risbud SH, Draper VF, Pask JA. Dependence of phase composition on nuclei available in SiO2–Al2O3 mixtures. J Am Ceram Soc. 1978;61:471–2.

    Article  CAS  Google Scholar 

  37. Okada K, Otsuka N. Formation process of mullite. In: Somiya S, Davis RF, Pask JA, editors. Mullite and mullite matrix composites, ceramic transitions. Westerville: American Ceramic Soc; 1990. p. 375–87.

    Google Scholar 

  38. Nguyen CT, Buscail H, Cueff R, Issartel C, Riffard F, Perrier S, Poble O. The effect of cerium oxide argon-annealed coatings on the high temperature oxidation of a FeCrAl alloy. Appl Surf Sci. 2009;255:9480–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Chęcmanowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chęcmanowski, J., Pelczarska, A.J., Szczygieł, I. et al. Influence of ceria and yttria on the protective properties of SiO2–Al2O3 coatings deposited by sol–gel method on FeCrAl alloy. J Therm Anal Calorim 126, 371–380 (2016). https://doi.org/10.1007/s10973-016-5556-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5556-x

Keywords

Navigation