Skip to main content
Log in

Low-temperature calorimetric study of layered perovskite-like ferrites GdSrFeO4 and Gd2SrFe2O7

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

We report the results of the study of thermodynamic properties for layered perovskite-like ferrites GdSrFeO4 and Gd2SrFe2O7. Isobaric heat capacity of the compounds was measured in an adiabatic calorimeter over the temperature range of 5–368 K. Low-temperature heat capacity anomalies were observed in the heat capacity curves of both compounds. Standard thermodynamic properties: molar heat capacity C p,m(T), reduced enthalpy ΔH m(T), entropy S m(T), and reduced Gibbs energy Φ m(T) of the oxides, were evaluated from the experimental heat capacity temperature dependence over the range of 25–370 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shirage PM, Kihou K, Lee CH, Kito H, Eisaki H, Iyo A. Discovery of the Ca4Al2O6Fe2Pn2 “Al-42622(Pn)” and Ca3Al2O5Fe2Pn2 “Al-32522(Pn)” (Pn = As, P) superconductors. Phys C Supercond. 2013;484:12–5.

    Article  CAS  Google Scholar 

  2. Asano H, Hayakawa J, Matsui M. Giant magnetoresistance of a two-dimensional ferromagnet La2−2xCa1+2xMn2O7. Appl Phys Lett. 1996;68:36–8.

    Article  Google Scholar 

  3. Missyul AB, Zvereva IA, Palstra TTM, Kurbakov AI. Double-layered Aurivillius-type ferroelectrics with magnetic moments. Mater Res Bull. 2010;45:546–50.

    Article  CAS  Google Scholar 

  4. Takenaka T, Nagata H, Hiruma Y. Current developments and prospective of lead-free piezoelectric ceramics. Jpn J Appl Phys. 2008;47:3787–801.

    Article  CAS  Google Scholar 

  5. Maeda K. Photocatalytic water splitting using semiconductor particles: history and recent developments. J Photochem Photobiol C Photochem. 2011;12:237–68.

    Article  CAS  Google Scholar 

  6. Zvereva I, Rodionov I. Photocatalytic properties of perovskite-type layered oxides. In: Zhang J, Li H, editors. Perovskite: crystallography, chemistry and catalytic performance. New York: Nova Science; 2013. p. 181–98.

    Google Scholar 

  7. Burovikhina AA, Rodionov IA, Chislov MV, Porotnikov DA, Zvereva IA. Photocatalytic activity of layered niobates ANdNb2O7 (A = H, Li, Na, Rb, Cs). J Nanotechnol. 2015;12:121–30.

    Google Scholar 

  8. Silyukov OI, Abdulaeva LD, Burovikhina AA, Rodionov IA, Zvereva IA. Phase transformations during HLnTiO4 (Ln = La, Nd) thermolysis and photocatalytic activity of obtained compounds. Solid State Chem. 2015;226:101–6.

    Article  CAS  Google Scholar 

  9. Demont A, Abanades S, Beche E. Investigation of perovskite structures as oxygen-exchange redox materials for hydrogen production from thermochemical two-step water-splitting cycle. J Phys Chem C. 2014;118:12682–92.

    Article  CAS  Google Scholar 

  10. Song S-H, Ahn K, Kanatzidis MG, Alonso JA, Cheng J-G, Goodenough JB. Effect of an internal electric field on the redox energies of ALnTiO4 (A = Na or Li, Ln = Y or Rare-Earth). Chem Mater. 2013;25:3852–7.

    Article  CAS  Google Scholar 

  11. Zhao ZY, et al. Magnetic phase transitions and magnetoelectric coupling of GdFeO3 single crystals probed by low-temperature heat transport. Phys Rev B. 2011;83:014414.

    Article  Google Scholar 

  12. Silva CLS, et al. Effect of gadolinium on the catalytic properties of iron oxides for WGSR. Catal Today. 2013;213:127–34.

    Article  CAS  Google Scholar 

  13. Li X, Duan Z-Q. Synthesis of GdFeO3 microspheres assembled by nanoparticles as magnetically recoverable and visible-light-driven photocatalysts. Mater Lett. 2012;89:262–5.

    Article  CAS  Google Scholar 

  14. Jacob KT, Abraham KP. Thermodynamic properties of calcium titanates: CaTiO3, Ca4Ti3O10, and Ca3Ti2O7. J Chem Thermodyn. 2009;41:816–20.

    Article  CAS  Google Scholar 

  15. Jacob KT, Rajitha G. Thermodynamic properties of strontium titanates: Sr2TiO4, Sr3Ti2O7, Sr4Ti3O10, and SrTiO3. J Chem Thermodyn. 2011;43:51–7.

    Article  CAS  Google Scholar 

  16. Kohut SV, Sankovich AM, Blokhin AV, Zvereva IA. Low-temperature heat capacity and thermodynamic properties of layered perovskite-like oxides NaNdTiO4 and Na2Nd2Ti3O10. J Therm Anal Calorim. 2014;115:119–26.

    Article  CAS  Google Scholar 

  17. Silyukov O, Chislov M, Burovikhina A, Utkina T, Zvereva I. Thermogravimetry study of ion exchange and hydration in layered oxide materials. J Therm Anal Calorim. 2012;110:187–92.

    Article  CAS  Google Scholar 

  18. Zinkevich M, Solak N, Nitsche H, Ahrens M, Aldinger F. Stability and thermodynamic functions of lanthanum nickelates. J Alloys Cmpd. 2007;438:92–9.

    Article  CAS  Google Scholar 

  19. Markin AV, Sankovich AM, Smirnova NN, Zvereva IA. Heat capacity and standard thermodynamic functions of NaGdTiO4 and Na2Gd2Ti3O10 over the range from (6 to 630) K. J Chem Eng Data. 2015. doi:10.1021/acs.jced.5b00047.

    Google Scholar 

  20. Ruddlesden SN, Popper P. New compounds of the K2NIF4 type. Acta Crystallogr. 1957;10:538–9.

    Article  CAS  Google Scholar 

  21. Zvereva IA, Otrepina IV, Semenov VG, Tugova EA, Popova VF, Gusarov VV. Mechanism of formation of the complex oxide Gd2SrFe2O7. Russ J Gen Chem. 2007;77:973–8.

    Article  CAS  Google Scholar 

  22. Otrepina IV, Volodin VV, Zvereva IA, Liu J-S. Investigation of the formation of the GdSrFeO4 oxide. Glass Phys Chem. 2009;35:423–30.

    Article  CAS  Google Scholar 

  23. Blokhin AV, Paulechka YU, Kabo GJ. Thermodynamic properties of [C6mim][NTf2] in the condensed state. J Chem Eng Data. 2006;51:1377–88.

    Article  CAS  Google Scholar 

  24. Akiyama K, Aoyama H, Abe N, Tojo T, Kawaji H, Atake T. Low-temperature thermodynamic properties of Gd2SrCo2O7. J Therm Anal Calorim. 2005;81:583–6.

    Article  CAS  Google Scholar 

  25. Neiner D, Spinu L, Golub V, Wiley J. Ferromagnetism in topochemically prepared layered perovskite Li0.3Ni0.85La2Ti3O10. Chem Mater. 2006;18:518–24.

    Article  CAS  Google Scholar 

  26. Liu S, Miiller W, Liu Y, Avdeev M, Ling CD. Sillen–Aurivillius intergrowth phases as templates for naturally layered multiferroics. Chem Mater. 2012;24:3932–42.

    Article  CAS  Google Scholar 

  27. Carlin RL. Magnetochemistry. Berlin: Springer; 1986.

    Book  Google Scholar 

  28. Cracknell AP, Tooke AO. The specific heats of magnetically-ordered materials. Contemp Phys. 1979;20:55–82.

    Article  CAS  Google Scholar 

  29. Bal’makov MD. Information capacity of condensed systems. Phys Usp. 1999;42:1167–73.

    Article  Google Scholar 

  30. Chislova IV, Shilova AV, Blokhin AV, Zvereva IA. Mechanism of formation, heat capacity and magnetic properties of layered ferrites. Abstracts of 11th Mediterranean conference on calorimetry and thermal analysis (MEDICTA 2013), Athens, 12–15 June 2013. p. 100.

  31. Bal’makov MD. The thermodynamic aspect of melting and softening of nanoparticles. Glass Phys Chem. 2008;34:559–68.

    Article  Google Scholar 

  32. Chislova IV, Matveeva AA, Volkova AV, Zvereva IA. Sol-gel synthesis of nanostructured perovskite-like gadolinium ferrites. Glass Phys Chem. 2011;37:653–60.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Russian Foundation for Basic Research (N 15-03-05981 and N 16-33-00125), St. Petersburg State University research Grant (Reg. 12.38.257.2014), Belarusian State Program of Scientific Research “Physical materials science, new materials and technology” (Grant 1.18) and partly performed in the Center for X-ray Diffraction Methods and Thermogravimetric and Calorimetric Research Centre of St. Petersburg State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna M. Sankovich.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankovich, A.M., Chislova, I.V., Blokhin, A.V. et al. Low-temperature calorimetric study of layered perovskite-like ferrites GdSrFeO4 and Gd2SrFe2O7 . J Therm Anal Calorim 126, 601–608 (2016). https://doi.org/10.1007/s10973-016-5542-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5542-3

Keywords

Navigation