Skip to main content
Log in

Thermal oxidative aging behavior and stabilizing mechanism of highly oriented polyamide 6

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Highly oriented polyamide 6 (PA6) was successfully fabricated through solid hot stretching technology. The effect of orientation on the structure and thermal oxidative stability of PA6 was investigated. It was found that the molecular orientation was incapable to change the degradation mechanism. Compared with the isotropic sample, a much slow drop of the intrinsic viscosity was observed for the oriented samples, and the degradation rate constant (k 1) decreased with the increase in draw ratio. The increasing trend of FTIR absorption assigned to different carbonyl groups was obviously slowed down by orientation, and the carbonyl index of the oriented PA6 was much lower than that of the isotropic sample during the whole aging process. The degradation temperature and char yield increased dramatically for the oriented sample of PA6, which displayed relatively high activation energy (E a) over the whole conversion degree. The enhancing mechanism of thermal oxidative stability of PA6 was explored, indicating that the relatively high crystallinity and orientation factor and the stable dense crystalline structure of α crystal formed by orientation were favorable for the improvement of the oxygen barrier property and slowing down the thermal oxidative degradation of PA6. This investigation clearly showed that molecular orientation can be an efficient way to enhance the thermal oxidative stability of PA6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Li L, Yang G. Variable-temperature FTIR studies on thermal stability of hydrogen bonding in nylon 6/mesoporous silica nanocomposite. Polym Int. 2009;58:503–10.

    Article  CAS  Google Scholar 

  2. Hu Z, Chen L, Wang Y-Z. Flame retardation of glass-fibre-reinforced polyamide 6 by a novel metal salt of alkylphosphinic acid. Polym Degrad Stab. 2011;96:1538–45.

    Article  CAS  Google Scholar 

  3. Sagar BF. Autoxidation of N-alkyl amides. Part III. Mechanism of thermal oxidation. J Chem Soc B. 1967;248:1047–61.

    Article  Google Scholar 

  4. Hua X, Scott G. Mechanisms of antioxidant action: the role of O-macroalkyl hydroxylamines in the photoantioxidant mechanism of HALS. Polym Degrad Stab. 1996;52:301–4.

    Article  Google Scholar 

  5. Hagler AT, Lapiccirella A. Spatial electron distribution and population analysis of amides, carboxylic acids, and peptides, and their relation to empirical potential functions. Biopolymers. 1976;15(06):1167–200.

    Article  CAS  Google Scholar 

  6. Lánská B. Thermo-oxidation of lactam-based polyamides with carboxylic end-groups. Decomposition of 6-hydroperoxy-6-hexanelactam in the presence of carboxylic acids. Eur Polym J. 1994;30(02):197–204.

    Article  Google Scholar 

  7. Gröning M, Hakkarainen M. Headspace solid-phase microextraction—a tool for new insights into the long-term thermo-oxidation mechanism of polyamide 6.6. J Chromatogr A. 2001;932:1–11.

    Article  Google Scholar 

  8. Li R, Hu X. Study on discoloration mechanism of polyamide 6 during thermo-oxidative degradation. Polym Degrad Stab. 1998;62:523–8.

    Article  CAS  Google Scholar 

  9. Shi K, Ye L, Li G. In situ stabilization of polyamide 6 with reactive antioxidant. J Therm Anal Calorim. 2015;119:1747–57.

    Article  CAS  Google Scholar 

  10. Dong WF, Gijsman P. The diffusion and solubility of Irganox 1098 in polyamide 6. Polym Degrad Stab. 2010;95(06):955–9.

    Article  CAS  Google Scholar 

  11. Rangari D, Vasanthan N. Study of strain-induced crystallization and enzymatic degradation of drawn poly (L-lactic acid)(PLLA) films. Macromolecules. 2012;45(18):7397–403.

    Article  CAS  Google Scholar 

  12. Zhou Y, Dan Y, Jiang L, Li G. The effect of crystallization on hydrolytic stability of polycarbonate. Polym Degrad Stab. 2013;98:1465–72.

    Article  CAS  Google Scholar 

  13. Shi K, Ye L, Li G. Structure and hydrothermal stability of highly oriented polyamide 6 produced by solid hot stretching. RSC Adv. 2015;5:30160–9.

    Article  Google Scholar 

  14. Solomon OF, Ciutǎ IZ. Détermination de la viscosité intrinsèque de solutions de polymères par une simple détermination de la viscosité. J Appl Polym Sci. 1962;6:683–6.

    Article  CAS  Google Scholar 

  15. Pitt CG, Zhong-wei G. Modification of the rates of chain cleavage of poly(ε-caprolactone) and related polyesters in the solid state. J Control Release. 1987;4:283–92.

    Article  CAS  Google Scholar 

  16. Gechele GB, Mattiussi A. Intrinsic viscosity-molecular weight relations for hydrolytic polycaprolactam. Eur Polym J. 1965;1:47–61.

    Article  CAS  Google Scholar 

  17. Zhou Q, Xanthos M. Nanoclay and crystallinity effects on the hydrolytic degradation of polylactides. Polym Degrad Stab. 2008;93:1450–9.

    Article  CAS  Google Scholar 

  18. Skrovanek DJ, Painter PC, Coleman MM. Hydrogen bonding in polymers. 2. Infrared temperature studies of nylon 11. Macromolecules. 1986;19(3):699–705.

    Article  CAS  Google Scholar 

  19. Luo J, Zhou T, Fu X. Mechanism in Brill transition of polyamide 66 studied by two-dimensional correlation infrared spectroscopy. Eur Polym J. 2011;47(2):230–7.

    Article  CAS  Google Scholar 

  20. Dong W, Gijsman P. Influence of temperature on the thermo-oxidative degradation of polyamide 6 films. Polym Degrad Stab. 2010;95(6):1054–62.

    Article  CAS  Google Scholar 

  21. Paik P, Karl KK. Thermal degradation kinetics and estimation of lifetime of polyethylene particles: effects of particle size. Mater Chem Phys. 2009;113:953–61.

    Article  CAS  Google Scholar 

  22. Peterson JD, Vyazovkin S, Wight CA. Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol Chem Phys. 2001;202:775–82.

    Article  CAS  Google Scholar 

  23. Holmes D, Bunn C, Smith D. The crystal structure of polycaproamide: nylon 6. J Polym Sci. 1955;17:159–77.

    Article  CAS  Google Scholar 

  24. Zhang X, Shi F, Niu J, et al. Superhydrophobic surfaces: from structural control to functional application. J Mater Chem. 2008;18(6):621–33.

    Article  CAS  Google Scholar 

  25. Rungswang W, Plailahan K, Saendee P, et al. Tensile deformation of in-reactor polymer alloy with preferentially oriented crystallite in parallel and perpendicular to uniaxial stretching direction: a model case from impact-resistance polypropylene copolymer. Polymer. 2013;54(14):3699–708.

    Article  CAS  Google Scholar 

  26. Liu Q, Sun X, Li H, et al. Orientation-induced crystallization of isotactic polypropylene. Polymer. 2013;54(17):4404–21.

    Article  CAS  Google Scholar 

  27. Fourati M, Pellerin C, Bazuin CG, et al. Infrared and fluorescence spectroscopy investigation of the orientation of two fluorophores in stretched polymer films. Polymer. 2013;54(2):730–6.

    Article  CAS  Google Scholar 

  28. Luo Y, Wang X, Wang Y. Effect of TiO2 nanoparticles on the long-term hydrolytic degradation behavior of PLA. Polym Degrad Stab. 2012;97:721–8.

    Article  CAS  Google Scholar 

  29. Rangari D, Vasanthan N. Study of strain-induced crystallization and enzymatic degradation of drawn poly(l-lactic acid) (PLLA) films. Macromolecules. 2012;45:7397–403.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Key Natural Science Foundation of China (Grant No. 51133005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, K., Ye, L. & Li, G. Thermal oxidative aging behavior and stabilizing mechanism of highly oriented polyamide 6. J Therm Anal Calorim 126, 795–805 (2016). https://doi.org/10.1007/s10973-016-5523-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5523-6

Keywords

Navigation