Skip to main content
Log in

Antagonistic flame retardancy between hexakis(4-nitrophenoxy) cyclotriphosphazene and potassium diphenylsulfone sulfonate in the PC system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Hexakis(4-nitrophenoxy) cyclotriphosphazene (HNTP) was added to polycarbonate (PC) as intumescent flame retardant. In order to get high-flame-retardant PC composite with a small quantity of addition, potassium diphenylsulfone sulfonate (KSS) was added to PC as synergetic flame retardant. The flame retardancy and thermal degradation behavior of composites was investigated with limiting oxygen index (LOI), UL-94 vertical burning test, microscale combustion calorimeter (MCC), and thermogravimetric analysis (TG). TG coupled with FTIR (TG/FTIR) was used to research their gaseous products. Scanning electron microscopy analyses and FTIR spectrophotometer were used to study the structure of residual char. But the flammability properties of PC systems indicated the synergistic was instead of antagonistic effects. The antagonistic behaviors between HNTP and KSS were further researched by MCC, TG, and FTIR. The antagonism of KSS was quantified by Lewin M’s synergistic effectiveness parameter, calculated from sample LOI data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Levchik SV, Weil ED. Flame retardants in commercial use or in advanced development in polycarbonates and polycarbonate blends. J Fire Sci. 2006;24(2):137–51.

    Article  CAS  Google Scholar 

  2. Levchik SV, Weil ED. Overview of recent developments in the flame retardancy of polycarbonates. Polym Int. 2005;54(7):981–98.

    Article  CAS  Google Scholar 

  3. Liu S, Ye H, Zhou Y, et al. Study on flame-retardant mechanism of polycarbonate containing sulfonate-silsesquioxane-fluoro retardants by TGA and FTIR. Polym Degrad Stab. 2006;91(8):1808–14.

    Article  CAS  Google Scholar 

  4. Huang X, Ouyang X, Ning F, et al. Mechanistic study on flame retardance of polycarbonate with a small amount of potassium perfluorobutane sulfonate by TGA–FTIR/XPS. Polym Degrad Stab. 2006;91(3):606–13.

    Article  CAS  Google Scholar 

  5. Singler RE, Hagnauer GL, Schneider NS, et al. Synthesis and characterization of polyaryloxyphosphazenes. J Polymer Sci Polymer Chem Edition. 1974;12(2):433–44.

    Article  CAS  Google Scholar 

  6. Yang Y, Kong W, Wang Y, et al. Synthesis of tris (phenoxy) trifluorocyclotriphosphazenes and study of its effects on the flammable, thermal, optical, and mechanical properties of bisphenol-A polycarbonate. J Therm Anal Calorim. 2015;122(2):805–16.

    Article  CAS  Google Scholar 

  7. Kumar D, Fohlen GM, Parker JA. The curing of epoxy resins with aminophenoxycyclotriphosphazenes. J Polym Sci, Part A: Polym Chem. 1986;24(10):2415–24.

    Article  CAS  Google Scholar 

  8. Kumar D, Khullar M, Gupta AD. Synthesis and characterization of novel cyclotriphosphazene-containing poly(ether imide)s. Polymer. 1993;34(14):3025–9.

    Article  CAS  Google Scholar 

  9. Zhang T, Cai Q, Wu DZ, et al. Phosphazene cyclomatrix network polymers: some aspects of the synthesis, characterization, and flame-retardant mechanisms of polymer. J Appl Polym Sci. 2005;95(4):880–9.

    Article  CAS  Google Scholar 

  10. Çoşut B, Hacıvelioğlu F, Durmuş M, et al. The synthesis, thermal and photophysical properties of phenoxycyclotriphosphazenyl-substituted cyclic and polymeric phosphazenes. Polyhedron. 2009;28(12):2510–6.

    Article  Google Scholar 

  11. Kourtides DA. Thermochemical and flammability properties of some thermoplastic and thermoset polymersa review. Polymer Plastics Technol Eng. 1978;11(2):159–98.

    Article  CAS  Google Scholar 

  12. Calleman CJ, Bergmark E, Costa LG. Acrylamide is metabolized to glycidamide in the rat: evidence from hemoglobin adduct formation. Chem Res Toxicol. 1990;3(5):406–12.

    Article  CAS  Google Scholar 

  13. Levchik SV, Camino G, Costa L, et al. Mechanism of action of phosphorus -based flame retardants in nylon 6. I. Ammonium polyphosphate. Fire Mater. 1995;19(1):1–10.

    Article  CAS  Google Scholar 

  14. Yuan D, Yin H, Cai X. Synergistic effects between silicon-containing flame retardant and potassium-4-(phenylsulfonyl) benzenesulfonate (KSS) on flame retardancy and thermal degradation of PC. J Therm Anal Calorim. 2013;114(1):19–25.

    Article  CAS  Google Scholar 

  15. Nodera A, Kanai T. Thermal decomposition behavior and flame retardancy of polycarbonate containing organic metal salts: effect of salt composition. J Appl Polym Sci. 2004;94(5):2131–9.

    Article  CAS  Google Scholar 

  16. Lewin M. Synergistic and catalytic effects in flame retardancy of polymeric materials—an overview. J Fire Sci. 1999;17(1):3–19.

    Article  CAS  Google Scholar 

  17. He J, Cai G, Wilkie CA. The effects of several sulfonates on thermal and fire retardant properties of poly (methyl methacrylate) and polystyrene. Polym Adv Technol. 2014;25(2):160–7.

    Article  CAS  Google Scholar 

  18. Lewin M. Synergism and catalysis in flame retardancy of polymers. Polym Adv Technol. 2001;12(3–4):215–22.

    Article  CAS  Google Scholar 

  19. Lyon RE, Walters RN. Pyrolysis combustion flow calorimetry. J Anal Appl Pyrol. 2004;71(1):27–46.

    Article  CAS  Google Scholar 

  20. Schartel B, Pawlowski KH, Lyon RE. Pyrolysis combustion flow calorimeter: a tool to assess flame retarded PC/ABS materials? Thermochim Acta. 2007;462(1):1–14.

    Article  CAS  Google Scholar 

  21. Shi Y, Kashiwagi T, Walters RN, et al. Ethylene vinyl acetate/layered silicate nanocomposites prepared by a surfactant-free method: enhanced flame retardant and mechanical properties. Polymer. 2009;50(15):3478–87.

    Article  CAS  Google Scholar 

  22. Tang Z, Li Y, Zhang YJ, et al. Oligomeric siloxane containing triphenyl phosphonium phosphate as a novel flame retardant for polycarbonate. Polym Degrad Stab. 2012;97(4):638–44.

    Article  CAS  Google Scholar 

  23. Tao K, Li J, Xu L, et al. A novel phosphazene cyclomatrix network polymer: design, synthesis and application in flame retardant polylactide. Polym Degrad Stab. 2011;96(7):1248–54.

    Article  CAS  Google Scholar 

  24. Lee LH. Mechanisms of thermal degradation of phenolic condensation polymers. I. Studies on the thermal stability of polycarbonate. J Polym Sci Part A Polymer Chem. 1964;2(6):2859–73.

    Google Scholar 

  25. Jang BN, Wilkie CA. The thermal degradation of bisphenol A polycarbonate in air. Thermochim Acta. 2005;426(12):73–84.

    Article  CAS  Google Scholar 

  26. Jang BN, Wilkie CA. A TGA/FTIR and mass spectral study on the thermal degradation of bisphenol A polycarbonate. Polym Degrad Stab. 2004;86(3):419–30.

    Article  CAS  Google Scholar 

  27. Uyar T, Tonelli AE, Hacaloğlu J. Thermal degradation of polycarbonate, poly (vinyl acetate) and their blends. Polym Degrad Stab. 2006;91(12):2960–7.

    Article  CAS  Google Scholar 

  28. Levchik SV, Camino G, Luda MP, et al. Thermal decomposition of cyclotriphosphazenes. I. Alkyl-aminoaryl ethers. J Appl Polym Sci. 1998;67(3):461–72.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the following for their generous supports : Dr. Jingxin Lei, for providing the FTIR instrumentation; the Experiment center of Polymer science and engineering academy, Sichuan University; National Natural Sciences Foundation of China, Grant No. 50973066; and “the Fundamental Research Funds for the Central Universities,” Project No. 2014NYB03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xufu Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Liu, J. & Cai, X. Antagonistic flame retardancy between hexakis(4-nitrophenoxy) cyclotriphosphazene and potassium diphenylsulfone sulfonate in the PC system. J Therm Anal Calorim 126, 571–583 (2016). https://doi.org/10.1007/s10973-016-5519-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5519-2

Keywords

Navigation