Skip to main content
Log in

Kinetic study of torrefaction of oil palm shell, mesocarp and empty fruit bunch

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The understanding of kinetic parameters and torrefaction mechanism is required for the design of the operational equipment for biomass torrefaction. This study presents the results from thermogravimetric analyses of oil palm shell (PS), mesocarp (MF) and empty fruit bunches (EFB) under inert atmosphere mimicking torrefaction. Torrefaction was studied isothermally within the range of 200–300 °C to analyze the kinetics of this process. The kinetic data were used to predict the torrefaction performance of all the three oil palm biomass using a two-stage decomposition mechanism that closely matches the experimental data. The activation energies corresponding to the first-stage reactions are 39.22, 28.61 and 60.47 kJ mol−1 for EFB, MF and PS, respectively. Activation energy for EFB is highest for the second-stage reactions at 35.18 kJ mol−1 followed by PS at 25.49 kJ mol−1 and MF at 25.49 kJ mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. British Petroleum G. BP statistical review of world energy. 2013.

  2. DOE U. International energy outlook 20132013. Report No.: DOE/EIA-0484(2013).

  3. USDA. Oilseeds: world markets and Trade2014. Report No.: FOP 01-14.

  4. Basiron Y, Chan KW. The palm oil and its sustainability. J Oil Palm Res. 2004;16(1):1–10.

    Google Scholar 

  5. Lee J-W, Kim Y-H, Lee S-M, Lee H-W. Optimizing the torrefaction of mixed softwood by response surface methodology for biomass upgrading to high energy density. Bioresour Technol. 2012;116:471–6.

    Article  CAS  Google Scholar 

  6. Prins MJ, Ptasinski KJ, Janssen FJJG. Torrefaction of wood: part 2. Analysis of products. J Anal Appl Pyrol. 2006;77(1):35–40.

    Article  CAS  Google Scholar 

  7. Phanphanich M, Mani S. Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresour Technol. 2010;102(2):1246–53.

    Article  Google Scholar 

  8. Chew JJ, Doshi V. Recent advances in biomass pretreatment—torrefaction fundamentals and technology. Renew Sust Energ Rev. 2011;15(8):4212–22.

    Article  Google Scholar 

  9. Prins MJ, Ptasinski KJ, Janssen FJJG. Torrefaction of wood: part 1. Weight loss kinetics. J Anal Appl Pyrol. 2006;77(1):28–34.

    Article  CAS  Google Scholar 

  10. Chen W-H, Kuo P-C. Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis. Energy. 2011;36(11):6451–60.

    Article  CAS  Google Scholar 

  11. Pétrissans A, Younsi R, Chaouch M, Gérardin P, Pétrissans M. Experimental and numerical analysis of wood thermodegradation. J Therm Anal Calorim. 2011;109(2):907–14.

    Article  Google Scholar 

  12. Bates RB, Ghoniem AF. Biomass torrefaction: modeling of reaction thermochemistry. Bioresour Technol. 2013;134:331–40.

    Article  CAS  Google Scholar 

  13. Di Blasi C, Lanzetta M. Intrinsic kinetics of isothermal xylan degradation in inert atmosphere. J Anal Appl Pyrol. 1997;40–41:287–303.

    Article  Google Scholar 

  14. Donahue CJ, Rais EA. Proximate analysis of coal. J Chem Educ. 2009;86(2):222–4.

    Article  CAS  Google Scholar 

  15. Yang H, Yan R, Chen H, Zheng C, Lee DH, Liang DT. In-depth investigation of biomass pyrolysis based on three major components:  hemicellulose, cellulose and lignin. Energy Fuel.

  16. García-Núñez JA, García-Pérez M, Das KC. Determination of kinetic parameters of thermal degradation of palm oil mill by-products using thermogravimetric analysis and differential scanning calorimetry. Trans ASABE. 2008;51(2):547–57.

    Article  Google Scholar 

  17. Law KN, Wan Daud WR, Ghazali A. Morphological and chemical nature of fiber strands of oil palm empty-fruit-bunch (OPEFB). Bioresources. 2007;2(3):351–62.

    CAS  Google Scholar 

  18. Luangkiattikhun P, Tangsathitkulchai C, Tangsathitkulchai M. Non-isothermal thermogravimetric analysis of oil-palm solid wastes. Bioresour Technol. 2008;99(5):986–97.

    Article  CAS  Google Scholar 

  19. Braga RM, Melo DMA, Aquino FM, Freitas JCO, Melo MAF, Barros JMF, et al. Characterization and comparative study of pyrolysis kinetics of the rice husk and the elephant grass. J Therm Anal Calorim. 2013;115(2):1915–20.

    Article  Google Scholar 

  20. Varhegyi G, Antal MJ, Jakab E, Szabo P. Kinetic modeling of biomass pyrolysis. J Anal Appl Pyrol. 1997;42(1):73–87.

    Article  CAS  Google Scholar 

  21. Khazraie Shoulaifar T, DeMartini N, Karlström O, Hupa M. Impact of organically bonded potassium on torrefaction: part 1. Experimental. Fuel. 2016;165:544–52.

    Article  CAS  Google Scholar 

  22. Nanou P, Carbo MC, Kiel JHA. Detailed mapping of the mass and energy balance of a continuous biomass torrefaction plant. Biomass Bioenerg. 2016;. doi:10.1016/j.biombioe.2016.02.012.

    Google Scholar 

  23. Ren S, Lei H, Wang L, Bu Q, Chen S, Wu J. Thermal behaviour and kinetic study for woody biomass torrefaction and torrefied biomass pyrolysis by TGA. Biosys Eng. 2013;116(4):420–6.

    Article  Google Scholar 

  24. White JE, Catallo WJ, Legendre BL. Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrol. 2011;91(1):1–33.

    Article  CAS  Google Scholar 

  25. Yaman S. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers Manage. 2004;45(5):651–71.

    Article  CAS  Google Scholar 

  26. Braga RM, Costa TR, Freitas JCO, Barros JMF, Melo DMA, Melo MAF. Pyrolysis kinetics of elephant grass pretreated biomasses. J Therm Anal Calorim. 2014;117(3):1341–8.

    Article  CAS  Google Scholar 

  27. Yang H, Yan R, Chin T, Liang DT, Chen H, Zheng C. Thermogravimetric analysis − Fourier transform infrared analysis of palm oil waste pyrolysis. Energy Fuel. 2004;18(6):1814–21.

    Article  CAS  Google Scholar 

  28. Guo J, Lua A. Kinetic study on pyrolysis of extracted oil palm fiber. Isothermal and non-isothermal conditions. J Therm Anal Calorim. 2000;59(3):763–74.

    Article  CAS  Google Scholar 

  29. Guo J, Lua AC. Kinetic study on pyrolytic process of oil-palm solid waste using two-step consecutive reaction model. Biomass Bioenerg. 2001;20(3):223–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding support from Monash University for this work under the Major Grant EM1-11 and Ministry of Education (MOE) Malaysia under the Fundamental Research Grant Scheme (FRGS) FRGS/1/2012/ST01/MUSM/03/2 and Taylor’s University Major Grant TRGS/MFS2/2013/SOE/006. We are also thankful to Dr. Luguang Chen for her technical assistance with the experiments and useful advice in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veena Doshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chew, JJ., Doshi, V., Yong, ST. et al. Kinetic study of torrefaction of oil palm shell, mesocarp and empty fruit bunch. J Therm Anal Calorim 126, 709–715 (2016). https://doi.org/10.1007/s10973-016-5518-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5518-3

Keywords

Navigation