Skip to main content
Log in

Synergistic effects between iron-graphene and ammonium polyphosphate in flame-retardant thermoplastic polyurethane

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This article mainly studies synergistic flame-retardant effects of iron-graphene (IG) and ammonium polyphosphate (APP) in thermoplastic polyurethane (TPU). A high concentration of TPU/IG masterbatch was prepared by solution-blending method, and the TPU/APP/IG composites were prepared by melt-blending method. Then, the synergistic effects between iron-graphene and ammonium polyphosphate in flame-retardant TPU were investigated by limiting oxygen index (LOI), cone calorimeter test, and thermogravimetric/Fourier infrared spectrum (TG-IR), respectively. Remarkably, the combination of 0.25 mass% IG and 9.75 mass% APP can make the LOI value increase by 38.3 %, HRR value decrease by 92.8 %, and SPR value decrease by 72.8 %, etc. TG and TG-IR data reveal that APP and IG improve the thermal stability of samples at high temperature and reduce the production of some toxic gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Liu Y, Liu MF, Xie DY, Wang Q. Thermoplastic polyurethane-encapsulated melamine phosphate flame retardant polyoxymethylene. Polym-Plastic Technol. 2008;47:330–4.

    Article  CAS  Google Scholar 

  2. Pielichowski K, Leszczynska A. TG-FTIR study of the thermal degradation of polyoxymethylene (POM)/thermoplastic polyurethane (TPU) blends. J Therm Anal Calorim. 2004;78:631–7.

    Article  CAS  Google Scholar 

  3. Harashina H, Tajima Y, Itoh T. Synergistic effect of red phosphorus, novolac and melamine ternary combination on flame retardancy of poly(oxymethylene). Polym Degrad Stabil. 2006;91:1996–2002.

    Article  CAS  Google Scholar 

  4. Allcorn EK, Natali M, Koo JH. Ablation performance and characterization of thermoplastic polyurethane elastomer nanocomposites. Compos A-Appl Sci. 2013;45:109–18.

    Article  CAS  Google Scholar 

  5. Jiao CM, Zhao XL, Song WK, Chen XL. Synergistic flame retardant and smoke suppression effects of ferrous powder with ammonium polyphosphate in thermoplastic polyurethane composites. J Therm Anal Calorim. 2015;120:1173–81.

    Article  CAS  Google Scholar 

  6. Bourbigot S, Samyn F, Turf T, Duquesne S. Nanomorphology and reaction to fire of polyurethane and polyamide nanocomposites containing flame retardants. Polym Degrad Stabil. 2010;95:320–6.

    Article  CAS  Google Scholar 

  7. Barick AK, Tripathy DK. Effect of nanofiber on material properties of vapor-grown carbon nanofiber reinforced thermoplastic polyurethane (TPU/CNF) nanocomposites prepared by melt compounding. Compos A Appl Sci Manuf. 2010;41:1471–82.

    Article  Google Scholar 

  8. Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM, Dubois P. New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Mat Sci Eng R. 2009;63:100–25.

    Article  Google Scholar 

  9. Covaci A, Harrad S, Abdallah MA, Ali N, Law RJ, Herzke D, et al. Novel brominated flame retardants: a review of their analysis, environmental fate and behaviour. Environ Int. 2011;37:532–56.

    Article  CAS  Google Scholar 

  10. Velencoso MM, Ramos MJ, Klein R, De Lucas A, Rodriguez JF. Thermal degradation and fire behaviour of novel polyurethanes based on phosphate polyols. Polym Degrad Stabil. 2014;101:40–51.

    Article  CAS  Google Scholar 

  11. Nie SB, Peng C, Yuan SJ, Zhang MX. Thermal and flame retardant properties of novel intumescent flame retardant polypropylene composites. J Therm Anal Calorim. 2013;113:865–71.

    Article  CAS  Google Scholar 

  12. Chen XL, Jiang YF, Jiao CM. Smoke suppression properties of ferrite yellow on flame retardant thermoplastic polyurethane based on ammonium polyphosphate. J Hazard Mater. 2014;266:114–21.

    Article  CAS  Google Scholar 

  13. Chen XL, Jiang YF, Jiao CM. Synergistic effects between hollow glass microsphere and ammonium polyphosphate on flame-retardant thermoplastic polyurethane. J Therm Anal Calorim. 2014;117:857–66.

    Article  CAS  Google Scholar 

  14. Chen XL, Liu L, Zhuo JL, Jiao CM, Qian Y. Influence of organic-modified iron-montmorillonite on smoke-suppression properties and combustion behavior of intumescent flame-retardant epoxy composites. High Perform Polym. 2014;27:233–46.

    Article  Google Scholar 

  15. Chen XL, Liu L, Zhuo JL, Jiao CM. Influence of iron oxide green on smoke suppression properties and combustion behavior of intumescent flame retardant epoxy composites. J Therm Anal Calorim. 2014;119:625–33.

    Article  Google Scholar 

  16. Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH. Recent advances in graphene-based biosensors. Biosens Bioelectron. 2011;26:4637–48.

    Article  CAS  Google Scholar 

  17. Ansari S, Kelarakis A, Estevez L, Giannelis EP. Oriented arrays of graphene in a polymer matrix by in situ reduction of graphite oxide nanosheets. Small. 2010;6:205–9.

    Article  CAS  Google Scholar 

  18. Rutkowski P, Klimczyk P, Jaworska L, Stobierski L, Dubiel A. Thermal properties of pressure sintered alumina-graphene composites. J Therm Anal Calorim. 2015;122:105–14.

    Article  CAS  Google Scholar 

  19. Bao CL, Song L, Wilkie CA, Yuan BH, Guo YQ, Hu Y. Graphite oxide, graphene, and metal-loaded graphene for fire safety applications of polystyrene. J Mater Chem. 2012;22:16399–406.

    Article  CAS  Google Scholar 

  20. Jiang SH, Gui Z, Bao CL, Dai K, Wang X, Zhou KQ, Shi YQ, Lo SM, Hu Y. Preparation of functionalized graphene by simultaneous reduction and surface modification and its polymethyl methacrylate composites through latex technology and melt blending. Chem Enj J. 2013;226:326–35.

    Article  CAS  Google Scholar 

  21. Yuan BH, Bao CL, Qian XD, Jiang SH, Wen PY, Xing WY, Song L, Liew KM, Hu Y. Synergetic dispersion effect of graphene nanohybrid on the thermal stability and mechanical properties of ethylene vinyl acetate copolymer nanocomposite. Ind Eng Chem Res. 2014;53:1143–9.

    Article  CAS  Google Scholar 

  22. Huang GB, Chen SQ, Song PA, Lu PP, Wu CL, Liang HD. Combination effects of graphene and layered double hydroxides on intumescent flame-retardant poly(methyl methacrylate) nanocomposites. Appl Clay Sci. 2014;88–89:78–85.

    Article  Google Scholar 

  23. Huang GB, Wang SQ, Song PA, Wu CL, Chen SQ, Wang X. Combination effect of carbon nanotubes with graphene on intumescent flame-retardant polypropylene nanocomposites. Compos A-Appl Sci. 2014;59:18–25.

    Article  CAS  Google Scholar 

  24. Bao CL, Song L, Xing WY, Yuan BH, Wilkie CA, Huang JL, Guo YQ, Hu Y. Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending. J Mater Chem. 2012;22:6088–96.

    Article  CAS  Google Scholar 

  25. Zhuang JF, Wang K, Jun Y, Tong W, Lin JZ, Jing F, Yue MR, Li PS, Fei W. Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. ACS Nano. 2011;5:191–8.

    Article  Google Scholar 

  26. Qu HQ, Liu CH, Wu WH, Chen LZ, Xu JZ. Using cone calorimeter to study thermal degradation of flexible PVC filled with zinc ferrite and Mg(OH)2. J Therm Anal Calorim. 2014;115:1081–7.

    Article  CAS  Google Scholar 

  27. Schartel B, Hull TR. Development of fire-retarded materials-interpretation of cone calorimeter data. Fire Mater. 2007;31:327–54.

    Article  CAS  Google Scholar 

  28. Bao CL, Guo YQ, Song L, Kan YC, Qian XD, Hu Y. In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements. J Mater Chem. 2011;21:13290–8.

    Article  CAS  Google Scholar 

  29. Jiao CM, Chen XL. Preparation and flame retardant properties of EVA/Mg(OH)2/La2O3 composites. Plast Rubber Compos. 2010;39:445–8.

    Article  CAS  Google Scholar 

  30. Lin M, Li B, Li QF, Li S, Zhang SQ. Synergistic effect of metal oxides on the flame retardancy and thermal degradation of novel intumescent flame-retardant thermoplastic polyurethanes. J Appl Polym Sci. 2011;121:1951–60.

    Article  CAS  Google Scholar 

  31. Ricciardi MR, Antonucci V, Zarrelli M, Giordano M. Fire behavior and smoke emission of phosphate-based inorganic fire-retarded polyester resin. Fire Mater. 2012;36:203–15.

    Article  CAS  Google Scholar 

  32. Chen XL, Jiao CM, Li SX, Hu Y. Preparation and properties of a single molecule intumescent flame retardant. Fire Safe J. 2013;58:208–12.

    Article  CAS  Google Scholar 

  33. Chen XL, Jiao CM. Thermal degradation characteristics of a novel flame retardant coating using TG-IR technique. Polym Degrad Stabil. 2008;93:2222–5.

    Article  CAS  Google Scholar 

  34. Park WH, Yoon KB. Optimization of pyrolysis properties using TGA and cone calorimeter test. Int J Therm Sci. 2013;22:168–73.

    Article  CAS  Google Scholar 

  35. Šimkovic I. TG/DTG/DTA evaluation of flame retarded cotton fabrics and comparison to cone calorimeter data. Carbohyd Polym. 2012;90:976–81.

    Article  Google Scholar 

  36. Li LL, Wang G, Wang SY, Qin S. Thermogravimetric and kinetic analysis of energy crop Jerusalem artichoke using the distributed activation energy model. J Therm Anal Calorim. 2013;114:1183–9.

    Article  CAS  Google Scholar 

  37. Zhao KM, Xu WZ, Song L, Wang BB, Feng H, Hu Y. Synergistic effects between boron phosphate and microencapsulated ammonium polyphosphate in flame-retardant thermoplastic polyurethane composites. Polym Adv Technol. 2012;23:894–900.

    Article  CAS  Google Scholar 

  38. Chen XL, Huo LL, Jiao CM, Li SX. TG-FTIR characterization of volatile compounds from flame retardant polyurethane foams materials. J Anal Appl Pyrol. 2013;100:186–91.

    Article  CAS  Google Scholar 

  39. Morgan AB. A review of transition metal-based flame retardants: transition metal oxide/salts, and complexes. ACS Symposium; 2009, pp. 312–28.

  40. Gallo E, Schartel B, Acierno D, Russo P. Flame retardant biocomposites: Synergism between phosphinate and nanometric metal oxides. Eur Polym J. 2011;47:1390–401.

    Article  CAS  Google Scholar 

  41. Aufmuth W, Levchik SV, Levchik GF, Klatt M. Poly(butylene terephthalate) fire retarded by 1,4-diisobutylene-2,3,5,6-tetraxydroxy-1, 4-diphosphine oxide. I. Combustion and thermal decomposition. Fire Mater. 1999;23:1–6.

    Article  CAS  Google Scholar 

  42. Carty P, White S. Importance of char-forming reactions in thermoplastic polymers NR 40. Fire Mater. 1994;18:151–66.

    Article  CAS  Google Scholar 

  43. Dittrich B, Wartig KA, Mülhaupt R, Schartel B. Flame-retardancy properties of intumescent ammonium poly(phosphate) and mineral filler magnesium hydroxide in combination with graphene. Polymers. 2014;6:2875–95.

    Article  Google Scholar 

  44. Zhang X, Alloul O, Qingliang He QL, Zhu JH, Verdea MJ, Li YT, Wei SY, Guo ZH. Strengthened magnetic epoxy nanocomposites with protruding nanoparticles on the graphene nanosheets. Polymer. 2013;54:3594–604.

    Article  CAS  Google Scholar 

  45. He Q, Yuan T, Wei S, Guo Z. Catalytic and synergistic effects on thermal stability and combustion behavior of polypropylene: influence of maleic anhydride grafted polypropylene stabilized cobalt nanoparticles. J Mater Chem A. 2013;1:13064–75.

    Article  CAS  Google Scholar 

  46. Shi Y, Qian X, Zhou K, Tang Q, Jiang S, Wang B, et al. CuO/graphene nanohybrids: preparation and enhancement on thermal stability and smoke suppression of polypropylene. Ind Eng Chem Res. 2013;52:13654–60.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (Nos. 51106078, 51206084) and the University Research and Development Projects Shandong Province (J14LA13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanmei Jiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Ma, C. & Jiao, C. Synergistic effects between iron-graphene and ammonium polyphosphate in flame-retardant thermoplastic polyurethane. J Therm Anal Calorim 126, 633–642 (2016). https://doi.org/10.1007/s10973-016-5494-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5494-7

Keywords

Navigation