Skip to main content

Thermogravimetric, differential scanning calorimetric, and experimental thermal transport study of functionalized nanokaolinite-doped elastomeric nanocomposites

Abstract

A simple technique to synthesize and functionalize kaolinite nanoparticles having analogous shape and size in single step using layered silicate microclay as starting material is presented. The morphology, composition, and functionalization study of the activated nanokaolinite were determined by scanning electron microscopy/energy-dispersive spectroscopy, atomic-force microscope, and Fourier transform infrared spectroscopy, correspondingly. Various concentrations of activated nanokaolinite were doped in acrylonitrile butadiene rubber (NBR) by conventional industrial elastomeric mixing techniques to fabricate composite specimens. The accumulated data simulated that the thermal conductivity was diminished 92 % by increasing 15 mass% filler loading in the polymer matrix. Thermogravimetric analyzer showed that thermal stability and heat-absorbing capability were remarkably augmented by increasing activated nanokaolinite concentration in the NBR base formulation. Differential scanning calorimetric study revealed that glass transition and crystallization temperatures were reduced, whereas first and second melting phase temperatures were enhanced by increasing filler-to-host matrix ratio. Tensile strength, elongation at break, and elastic modulus at 200 % elongation were remarkably improved to a level of 144, 66, and 90 %, respectively, with increasing filler-to-matrix ratio. Efficient enhancement in elastomeric hardness was also observed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Ghassemieh E. Enhancement of the properties of EPDM/NBR elastomers using nanoclay for seal applications. Polym Compos. 2009;30(11):1657–67.

    CAS  Article  Google Scholar 

  2. Rajkumar K, Kumari N, Ranjith P, Chakraborty S. High Temperature Resistance Properties of NBR Based Polymer Nanocomposites. High Temp. 2011;3(3):1343–8.

    CAS  Google Scholar 

  3. Sagar S, Iqbal N, Maqsood A, Shahid M, Shah NA, Jamil T et al. Fabrication and thermal characteristics of functionalized carbon nanotubes impregnated polydimethylsiloxane nanocomposites. J Compos Mater. 2014:0021998314528733.

  4. Amsc N, Cmps AA. Composite materials handbook. German. 2002.

  5. Zhang C, Pal K, Byeon JU, Han SM, Kim JK. A study on mechanical and thermal properties of silicone rubber/EPDM damping materials. J Appl Polym Sci. 2011;119(5):2737–41.

    CAS  Article  Google Scholar 

  6. Sagar S, Iqbal N, Maqsood A. Multiwalled carbon nanotubes impregnated rubber nanocomposites: thermal transport/decomposition and differential scanning calorimetric study. J Reinforc Plast Compos. 2013;32(14):1052–61.

    Article  Google Scholar 

  7. Sagar S, Iqbal N, Maqsood A, Bassyouni M. MWCNTS incorporated natural rubber composites: thermal insulation, phase transition and mechanical properties. Int J Eng Technol. 2014;6(3):168–73.

    CAS  Article  Google Scholar 

  8. Rathinasamy P, Balamurugan P, Balu S, Subrahmanian V. Effect of adhesive‐coated glass fiber in natural rubber (NR), acrylonitrile rubber (NBR), and ethylene–propylene–diene rubber (EPDM) formulations. I. Effect of adhesive‐coated glass fiber on the curing and tensile properties of NR, NBR, and EPDM formulations. J Appl Polym Sci. 2003;91(2):1111–23.

    Article  Google Scholar 

  9. Iqbal N, Khan MB, Sagar S, Maqsood A. Fabrication and characterization of multiwalled carbon nanotubes/silicone rubber composites. J Appl Polym Sci. 2013;128(4):2439–46. doi:10.1002/app.38410.

    CAS  Article  Google Scholar 

  10. Sebenik U, Karger-Kocsis J, Krajnc M, Thomann R. Dynamic mechanical properties and structure of in situ cured polyurethane/hydrogenated nitrile rubber compounds: effect of carbon black type. J Appl Polym Sci. 2012;125:E41–8. doi:10.1002/app.35626.

    CAS  Article  Google Scholar 

  11. Sagar S, Iqbal N, Maqsood A, Javaid U. Thermogravimetric, differential scanning calorimetric and experimental thermal transport study of MWCNT/NBR nanocomposites. J Therm Anal Calorim. 2013;114:161–7.

    CAS  Article  Google Scholar 

  12. Brydson JA. Thermoplastic elastomers: properties and applications. UK: Smithers Rapra Publishing; 1995.

    Google Scholar 

  13. Rajeev R, De S, Bhowmick AK, John B. Studies on thermal degradation of short melamine fibre reinforced EPDM, maleated EPDM and nitrile rubber composites. Polym Degrad Stab. 2003;79(3):449–63.

    CAS  Article  Google Scholar 

  14. Balachandran M, Devanathan S, Muraleekrishnan R, Bhagawan S. Optimizing properties of nanoclay-nitrile rubber (NBR) composites using face centered central composite design. Mater Des. 2012;35:854–62.

    CAS  Article  Google Scholar 

  15. McKeen LW. Permeability properties of plastics and elastomers. USA: William Andrew; 2011.

    Google Scholar 

  16. El-Sabbagh SH, Ahmed NM, Ward AA. Effect of kaolin-metal oxides core-shell pigments on the properties of styrene-butadiene rubber composites. Mater Des. 2012;40:343–55. doi:10.1016/j.matdes.2012.04.004.

    CAS  Article  Google Scholar 

  17. Conzatti L, Stagnaro P, Colucci G, Bongiovanni R, Priola A, Lostritto A, et al. The clay mineral modifier as the key to steer the properties of rubber nanocomposites. Appl Clay Sci. 2012;61:14–21. doi:10.1016/j.clay.2012.03.004.

    CAS  Article  Google Scholar 

  18. Bahramian AR, Kokabi M, Famili MHN, Beheshty MH. High temperature ablation of kaolinite layered silicate/phenolic resin/asbestos cloth nanocomposite. J Hazard Mater. 2008;150(1):136–45.

    CAS  Article  Google Scholar 

  19. Kaneko MLQA, Romero RB, Gonçalves MC, Yoshida IVP. High molar mass silicone rubber reinforced with montmorillonite clay masterbatches: morphology and mechanical properties. Eur Polym J. 2010;46(5):881–90.

    CAS  Article  Google Scholar 

  20. Kim ES, Kim EJ, Lee TH, Yoon JS. Clay modification and its effect on the physical properties of silicone rubber/clay composites. J Appl Polym Sci. 2012;125:E298–304.

    CAS  Article  Google Scholar 

  21. Panda AK, Mishra B, Mishra D, Singh R. Effect of sulphuric acid treatment on the physico-chemical characteristics of kaolin clay. Colloid Surf A. 2010;363(1):98–104.

    CAS  Article  Google Scholar 

  22. Salehi M, Razzaghi-Kashani M. Comparing styrene butadiene rubber-clay nanocomposites prepared by melt intercalation and latex-coagulation methods. J Appl Polym Sci. 2012;126(1):253–9. doi:10.1002/app.36980.

    CAS  Article  Google Scholar 

  23. Bahramian AR, Kokabi M, Beheshty MH, Famili MHN. Thermal degradation process of resol type phenolic matrix/kaolinite layered silicate nanocomposite. Iranian Polym J. 2007;16(6):375–87.

    CAS  Google Scholar 

  24. Del Cid MAG, Prolongo MG, Salom C, Arribas C, Sanchez-Cabezudo M, Masegosa RM. The effect of stoichiometry on curing and properties of epoxy-clay nanocomposites. J Therm Anal Calorim. 2012;108(2):741–9. doi:10.1007/s10973-012-2215-8.

    Article  Google Scholar 

  25. Fu X, Qutubuddin S. Polymer–clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene. Polymer. 2001;42(2):807–13.

    CAS  Article  Google Scholar 

  26. Carter LW, Hendricks JG, Bolley DS. Elastomer reinforced with a modified clay. Google Patents; 1950.

  27. Byrd SW. Flexible water impervious sheet adhered to concrete substrate with self-sealing adhesive layer comprising bentonite-elastomer-plasticizer mixture and water soluble polymer layer. Google Patents; 1996.

  28. Yau YH, Wong HF, Ahmad N. Numerical heat transfer study for a large rubber product. Int J Heat Mass Trans. 2012;55(11–12):2879–88. doi:10.1016/j.ijheatmasstransfer.2012.02.007.

    CAS  Article  Google Scholar 

  29. Ko YJ, Kang SJ, An HY, Kim JH. Poly (amic acid) treatment on BaTiO3 and effect on the dielectric properties of BaTiO3/polyimide composites. Adv Mater Res. 2012;560:880–5.

    Article  Google Scholar 

  30. Vandenberg ET, Bertilsson L, Liedberg B, Uvdal K, Erlandsson R, Elwing H, et al. Structure of 3-aminopropyl triethoxy silane on silicon oxide. J Colloid Interface Sci. 1991;147(1):103–18.

    CAS  Article  Google Scholar 

  31. Reyes CAR, Williams C, Alarcón OMC. Nucleation and growth process of sodalite and cancrinite from kaolinite-rich clay under low-temperature hydrothermal conditions. Mater Res. 2013;16(2):424–38.

    CAS  Article  Google Scholar 

  32. Franco F, Cecila J, Pérez-Maqueda L, Pérez-Rodríguez J, Gomes C. Particle-size reduction of dickite by ultrasound treatments: effect on the structure, shape and particle-size distribution. Appl Clay Sci. 2007;35(1):119–27.

    CAS  Article  Google Scholar 

  33. Nair P, Joseph R. Nanokaolin clay as reinforcing filler in nitrile rubber. Int J Sci Eng Res. 2012;3(3):1–9.

    Google Scholar 

  34. Mu LW, Shi YJ, Feng X, Zhu JH, Lu XH. The effect of thermal conductivity and friction coefficient on the contact temperature of polyimide composites: experimental and finite element simulation. Tribol Int. 2012;53:45–52. doi:10.1016/j.triboint.2012.04.003.

    CAS  Article  Google Scholar 

  35. Pham DC. Weighted effective medium approximations for conductivity of random composites. Int J Heat Mass Trans. 2008;51(13–14):3355–61. doi:10.1016/j.ijheatmasstransfer.2007.11.035.

    CAS  Article  Google Scholar 

  36. Song J, Ma L, He Y, Li W, Yao S-C. Modeling thermal conductivity of natural rubber with carbon black. In: International Heat Transfer Conference Proceeding. 2015. doi:10.1615/IHTC15.tpp.008568.

  37. Noriman NZ, Ismail H, Rashid AA. The effects of trans-polyoctylene rubber on thermal analysis and fatigue properties of styrene butadiene rubber/recycled acrylonitrile butadiene rubber. Adv Polym Technol. 2012;31(2):100–8. doi:10.1002/adv.20240.

    CAS  Article  Google Scholar 

  38. Yu H, Li LL, Kido T, Xi GN, Xu GC, Guo F. Thermal and insulating properties of epoxy/aluminum nitride composites used for thermal interface material. J Appl Polym Sci. 2011;124(1):669–77. doi:10.1002/app.35016.

    Article  Google Scholar 

  39. Raza MA, Westwood AVK, Stirling C, Hondow N. Transport and mechanical properties of vapour grown carbon nanofibre/silicone composites. Compos Pt A Appl Sci Manuf. 2011;42(10):1335–43. doi:10.1016/j.compositesa.2011.05.016.

    Article  Google Scholar 

  40. Iqbal N, Sagar S, Khan MB, Rafique HM. Ablation, thermal stability/transport and mechanical investigations of modified nanokaolinite impregnated acrylonitrile butadiene rubber composites. J Compos Mater. 2013;48(10):1221–31.

    Article  Google Scholar 

  41. Iqbal N, Sagar S, Khan MB, Rafique HM. Elastomeric ablative nanocomposites used in hyperthermal environments. Polym Eng Sci. 2013;54(2):255–63.

    Article  Google Scholar 

  42. Chen S, Yu H, Ren W, Zhang Y. Thermal degradation behavior of hydrogenated nitrile-butadiene rubber (HNBR)/clay nanocomposite and HNBR/clay/carbon nanotubes nanocomposites. Thermochim Acta. 2009;491(1–2):103–8.

    CAS  Article  Google Scholar 

  43. Cibulkova Z, Cerna A, Simon P, Uhlar J, Kosar K, Lehocky P. DSC study of stabilizing effect of antioxidant mixtures in styrene-butadiene rubber. J Therm Anal Calorim. 2012;108(2):415–9. doi:10.1007/s10973-011-1963-1.

    CAS  Article  Google Scholar 

  44. Cibulkova Z, Cerna A, Simon P, Uhlar J, Kosar K, Lehocky P. Stabilization effect of potential antioxidants on the thermooxidative stability of styrene-butadiene rubber. J Therm Anal Calorim. 2011;105(2):607–13. doi:10.1007/s10973-011-1322-2.

    CAS  Article  Google Scholar 

  45. Iqbal SS, Iqbal N, Jamil T, Bashir A, Khan ZM. Tailoring in thermomechanical properties of ethylene propylene diene monomer elastomer with silane functionalized multiwalled carbon nanotubes. J Appl Polym Sci. 2016;133(12). doi:10.1002/app.43221.

  46. Ali Raza M, Westwood A, Stirling C, Brydson R, Hondow N. Effect of nanosized carbon black on the morphology, transport, and mechanical properties of rubbery epoxy and silicone composites. J Appl Polym Sci. 2012;126:641–52.

    Article  Google Scholar 

  47. Iqbal N, Sagar S, Khan MB. Comprehensive ablation characteristics of ceramic fibers impregnated rubber composites. Int J Eng Technol. 2014;6(3):162–7.

    CAS  Article  Google Scholar 

  48. Asghar M, Iqbal N, Iqbal SS, Farooq M, Jamil T. Ablation and thermo-mechanical tailoring of EPDM rubber using carbon fibers. J Polym Eng. 2015;. doi:10.1515/polyeng-2015-0337.

    Google Scholar 

Download references

Acknowledgements

The authors would like to greatly acknowledge Start Up Research Grant program (SRGP) from Higher Education Commission (HEC) of Pakistan (No: 21-433 SRGP/R&D/HEC/2014) for providing sufficient funds to execute this research; Research grant of fiscal year 2015–2016 of University of Punjab, Lahore, Pakistan, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Longman Mills, Lahore, which facilitated us with the best of their rubber nanocomposite fabrication and testing expertise and facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadia Sagar Iqbal.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sagar Iqbal, S., Inam, F., Iqbal, N. et al. Thermogravimetric, differential scanning calorimetric, and experimental thermal transport study of functionalized nanokaolinite-doped elastomeric nanocomposites. J Therm Anal Calorim 125, 871–880 (2016). https://doi.org/10.1007/s10973-016-5486-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5486-7

Keywords

  • Nanokaolinite
  • Polymer matrix composites (PMCs)
  • Thermomechanical properties
  • Transport properties
  • Functionalization of kaolinite