Skip to main content

Physicochemical characterization of a new raw material obtained from leaves of Syzygium cumini (L.) Skeel (Myrtaceae)

Abstract

The aim of this study was to determine the physicochemical characteristics of leaves of Syzygium cumini L. Skeels plant and characterize the extract of this plant by analytical techniques. Pharmacopeial methods of physicochemical analysis were used, including morphological characterization of the particle, thermal analysis, infrared spectroscopy and X-ray diffraction. The plant drug was presented as a coarse powder, within the appropriate Brazilian Pharmacopoeia parameters. The X-ray diffraction, optical microscopy and scanning electron microscopy suggested that the extract particles are amorphous and have irregular shapes, so that clusters of different sizes and morphologies are displayed. Thermal decomposition of the organic components in the sample started in a step that occurred between 151.64 and 209.27 °C with mass loss of 9.08 %, followed by another step with more significant mass loss (28.16 %). The infrared spectrum, in turn, showed many functional groups of compounds present in the lyophilized extract in different absorption bands. The results showed that the analytical techniques allowed us to characterize the physicochemical properties of the plant leaves, which may be useful in the production of new herbal medicines.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Silva JMC, Bates JM. Biogeographic patterns and conservation in the South American Cerrado: a tropical savanna hotspot. Bioscience. 2002;52:225–33.

    Article  Google Scholar 

  2. 2.

    Ratter JA, Ribeiro JF, Bridgewater S. The Brazilian cerrado vegetation and threats to its biodiversity. Ann Bot. 1997;80:223–30.

    Article  Google Scholar 

  3. 3.

    Rezende WP, Borges LL, Alves NM, Ferri PH, Paula JR. Chemical variability in the essential oils from leaves of Syzygium jambos. Rev Bras Farmacogn. 2013;23:433–40.

    CAS  Article  Google Scholar 

  4. 4.

    BRASIL. Ministério do MeioAmbiente (MMA). O BiomaCerrado. Brasília, 2009. http://www.mma.gov.br/biomas/cerrado.

  5. 5.

    Cartaxo SL, Souza MMA, Albuquerque UP. Medicinal plants with bioprospecting potential used in semi-arid northeastern Brazil. J Ethnopharmacol. 2010;131:326–42.

    Article  Google Scholar 

  6. 6.

    Pinn G. Herbal medicine in infectious disease. Aust Fam Physician. 2001;30:681–4.

    CAS  Google Scholar 

  7. 7.

    Silva MSP, Brandão DO, Chaves TP, Formiga Filho ALN, Costa EMMB, Santos VL, Medeiros ACD. Study bioprospecting of medicinal plant extracts of the semiarid northeast: contribution to the control of oral microorganisms. Evid-Based Complement Altern. 2012;. doi:10.1155/2012/681207.

    Google Scholar 

  8. 8.

    Malone MH. The pharmacological evaluation of natural products: general and specific approaches to screening ethnopharmaceuticals. J Ethnopharmacol. 1983;8:127–47.

    CAS  Article  Google Scholar 

  9. 9.

    Teixeira CC, Fuchs FD. The efficacy of herbal medicines in clinical models: the case of Jambolan. J Ethnopharmacol. 2006;108:16–9.

    Article  Google Scholar 

  10. 10.

    Mohamed AA, Ali SI, El-Baz FK. Antioxidant and antibacterial activities of crude extracts and essential oils of Syzygium cumini leaves. PLoS One. 2013;8:e60269.

    CAS  Article  Google Scholar 

  11. 11.

    De Bona KS, Bonfanti G, Bitencourt PE, Cargnelutti LO, da Silva PS, da Silva TP, Zanette RA, Pigatto AS, Moretto MB. Syzygium cumini is more effective in preventing the increase of erythrocytic ADA activity than phenolic compounds under hyperglycemic conditions in vitro. J Physiol Biochem. 2014;70:321–30.

    Google Scholar 

  12. 12.

    Srivastava S, Chandra D. Pharmacological potentials of Syzygium cumini: a review. J Sci Food Agric. 2013;93:2084–93.

    CAS  Article  Google Scholar 

  13. 13.

    Siani AC, Souza MC, Henriques MG, Ramos MF. Anti-inflammatory activity of essential oils from Syzygium cumini and Psidium guajava. Pharm Biol. 2013;51:881–7.

    Article  Google Scholar 

  14. 14.

    Saxena S, Gautam S, Sharma A. Comparative evaluation of antimutagenicity of commonly consumed fruits and activity-guided identification of bioactive principles from the most potent fruit, Java plum (Syzygium cumini). J Agric Food Chem. 2013;61:10033–42.

    CAS  Article  Google Scholar 

  15. 15.

    Ayyanar M, Subash-Babu P, Ignacimuthu S. Syzygium cumini (L.) Skeels., a novel therapeutic agent for diabetes: folk medicinal and pharmacological evidences. Complement Ther Med. 2013;21:232–43.

    Article  Google Scholar 

  16. 16.

    Ayyanar M, Subash-Babu P. Syzygium cumini (L.) Skeels: a review of its phytochemical constituents and traditional uses. Asian Pac J Trop Biomed. 2012;2:240–6.

    Article  Google Scholar 

  17. 17.

    Bouhelier A. Field-enhanced scanning near-field optical microscopy. Microsc Res Tech. 2006;69:563–79.

    CAS  Article  Google Scholar 

  18. 18.

    Burton Z, Bhushan B. Surface characterization and adhesion and friction properties of hydrophobic leaf surfaces. Ultramicroscopy. 2006;106:709–19.

    CAS  Article  Google Scholar 

  19. 19.

    Yu H, Cheng L, Yin J, Yan S, Liu K, Zhang F, Xu B, Li L. Structure and physicochemical properties of starches in lotus (Nelumbo nucifera Gaertn) rhizome. Food Sci Nutr. 2013;1:273–83.

    CAS  Article  Google Scholar 

  20. 20.

    Kumar N, Singh P, Kumar S. Physical, X-ray diffraction and scanning electron microscopic studies of uroliths. Indian J Biochem Biophys. 2006;43:226–32.

    CAS  Google Scholar 

  21. 21.

    Chaves JS, Da Costa FB, Freitas LAP. Development of enteric coated tablets from spray dried extract of feverfew (Tanacetum parthenium L.). Braz J Pharm Sci. 2009;45:573–84.

    CAS  Article  Google Scholar 

  22. 22.

    Gallo L, Llbot JM, Allemandi D, Bucalá V, Piña J. Influence of spray-drying operating conditions on Rhamnus purshiana (Cáscarasagrada) extract powder physical properties. Powder Technol. 2011;208:205–14.

    CAS  Article  Google Scholar 

  23. 23.

    Fernandes FHA, Santana CP, Santos LS, Correia LP, Conceição MM, Macêdo RU, Medeiros ACD. Characterization of dried extract of medicinal plant by DSC and analytical techniques. J Therm Anal Calorim. 2013;113:443–7.

    CAS  Article  Google Scholar 

  24. 24.

    Costa RS, Negrão CA, Camelo SR, Costa RM, Barbosa WL, Costa CE, Silva-Júnior JO. Investigation of thermal behavior of Heliotropium indicum L. lyophilized extract by TG and DSC. J Therm Anal Calorim. 2013;111:1959–64.

    CAS  Article  Google Scholar 

  25. 25.

    Wesolowski M, Konieczynski P. Thermoanalytical, chemical and principal component analysis of plant drugs. Int J Pharm. 2003;262:29–37.

    CAS  Article  Google Scholar 

  26. 26.

    Kumar V, Yadav SC, Yadav SK. Syzygium cumini leaf and seed extract mediated biosynthesis of silver nanoparticles and their characterization. J ChemTechnol Biotechnol. 2010;85:1301–9.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nathália Alexandra de Oliveira Cartaxo-Furtado.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cartaxo-Furtado, N.A.O., de Castilho, A.R.F., Freires, I.A. et al. Physicochemical characterization of a new raw material obtained from leaves of Syzygium cumini (L.) Skeel (Myrtaceae). J Therm Anal Calorim 127, 1137–1141 (2017). https://doi.org/10.1007/s10973-016-5483-x

Download citation

Keywords

  • Phytochemical
  • Syzygium cumini
  • Natural product
  • Plant authenticity