Skip to main content
Log in

Designing artificial neural network on thermal conductivity of Al2O3–water–EG (60–40 %) nanofluid using experimental data

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The main purpose of this research was to investigate the efficiency of artificial neural networks in modeling thermal conductivity data of water–EG (40–60 %) nanofluid with aluminum oxide nanoparticles (with average diameter of 36 nm). The measured data as modeling input data are in six volume fractions from 0 to 1.5 % and different temperatures from 20 to 60 °C. In order to optimize the network, different numbers of neurons with different transfer functions have been tested and after preprocessing and normalizing the data, the optimum network structure with one hidden layer and six neurons was obtained. This structure simulated the experimental data with very high precision. The measured thermal conductivity was compared with the two models that calculated thermal conductivity for mixtures. The results indicated that Hamilton–Crosser and Lu–Lin models failed in estimating the thermal conductivity of Alumina–water–EG nanofluid in different temperatures and concentration. Finally, a new correlation was presented based on experimental data with regression coefficient of 0.9974.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

ANN:

Artificial neural network

Dev.:

Deviation of results from empirical data

EG:

Ethylene glycol

k:

Thermal conductivity

MSE:

Mean-squared error

R:

Regression coefficient

S:

Standard distance from regression line

Std:

Standard deviation

T:

Temperature

φ :

Volume concentration

eff.:

Efficient

exp.:

Obtained experimentally

f:

Fluid

nf:

Nanofluid

P:

Particle

pred.:

Predicted results

References

  1. Kim KM, Jeong YS, Kim IG, Bang IC. Comparison of thermal performances of water-filled, SiC nanofluid-filled and SiC nanoparticles-coated heat pipes. Int J Heat Mass Transf. 2015;88:862–71.

    Article  CAS  Google Scholar 

  2. Bashirnezhad K, Rashidi MM, Yang Z, Bazri S, Yan W-M. A comprehensive review of last experimentalstudies on thermal conductivity of nanofluids. J Therm Anal Calorim. 2015;122(2):863–84.

    Article  CAS  Google Scholar 

  3. Ahammed N, Asirvatham LG, Wongwises S. Effect of volume concentration and temperature on viscosity and surface tension of graphene–water nanofluid for heat transfer applications. J Therm Anal Calorim. 2016;123(2):1399–409.

    Article  CAS  Google Scholar 

  4. Bahiraei M. A numerical study of heat transfer characteristics of CuO–water nanofluid by Euler-Lagrange approach. J Therm Anal Calorim. 2016;123(2):1591–9.

    Article  CAS  Google Scholar 

  5. Hosseinzadeh M, Heris SZ, Beheshti A, Shanbedi M. Convective heat transfer and friction factor of aqueous Fe3O4 nanofluid flow under laminar regime. J Therm Anal Calorim. 2016;124(2):827–38.

    Article  CAS  Google Scholar 

  6. Hemmat Esfe M, Saedodin S, Wongwises S, Toghraie D. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. J Therm Anal Calorim. 2015;119(3):1817–24.

    Article  CAS  Google Scholar 

  7. Hemmat Esfe M, Wongwises S, Naderi A, Asadi A, Safaei MR, Rostamian H, Dahari M, Karimipour A. Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: Experimental data and modeling using artificial neural network and correlation. Int Commun Heat Mass Transf. 2015;66:100–4.

    Article  CAS  Google Scholar 

  8. Hemmat M, Esfe S, Saedodin M, Akbari A, Karimipour M, Afrand S, Wongwises MR. Safaei, and M. Dahari, Experimental investigation and development of new correlations for thermal conductivity of CuO/EG–water nanofluid. Int Commun Heat Mass Transf. 2015;65:47–51.

    Article  Google Scholar 

  9. Hemmat M, Esfe H, Rostamian M, Afrand A. Karimipour, and M. Hassani, Modeling and estimation of thermal conductivity of MgO–water/EG (60:40) by artificial neural network and correlation. Int Commun Heat Mass Transf. 2015;68:98–103.

    Article  Google Scholar 

  10. Sundar LS, Farooky MH, Sarada SN, Singh MK. Experimental thermal conductivity of ethylene glycol and water mixture based low volume concentration of Al2O3 and CuO nanofluids. Int Commun Heat Mass Transf. 2013;41:41–6.

    Article  CAS  Google Scholar 

  11. Hemmat Esfe M, Yan WM, Akbari M, Karimipour A, Hassani M. Experimental study on thermal conductivity of DWCNT ZnO/water EG nanofluids. Int Commun Heat Mass Transf. 2015;68:248–51.

    Article  CAS  Google Scholar 

  12. Hemmat Esfe M, Saedodin S, Sina N, Afrand M. Designing an artificial neural network to predict thermal conductivity and dynamic viscosity of ferromagnetic nanofluid. Int Commun Heat Mass Transf. 2015;68:50–7.

    Article  CAS  Google Scholar 

  13. Sundar LS, Singh MK, Sousa ACM. Thermal conductivity of ethylene glycol and water mixture based Fe3O4 nanofluid. Int Commun Heat Mass Transf. 2013;49:17–24.

    Article  CAS  Google Scholar 

  14. Naik MT, Sundar LS. Investigation into thermophysical properties of glycol based CuO nanofluid for heat transfer applications. World Acad Sci Eng Tech. 2011;59:440–6.

    Google Scholar 

  15. Akhavan-Behabadi MA, Nasr M, Baqeri S. Experimental investigation of flow boiling heat transfer of R-600a/oil/CuO in a plain horizontal tube. Exp Therm Fluid Sci. 2014;58:105–11.

    Article  CAS  Google Scholar 

  16. Beheshti A, Shanbedi M, Heris SZ. Heat transfer and rheological properties of transformer oil-oxidized MWCNT nanofluid. J Therm Anal Calorim. 2014;118(3):1451–60.

    Article  CAS  Google Scholar 

  17. Jiang H, Li H, Zan C, Wang F, Yang Q, Shi L. Temperature dependence of the stability and thermal conductivity of an oil-based nanofluid. Thermochim Acta. 2014;579:27–30.

    Article  CAS  Google Scholar 

  18. Kole M, Dey TK. Role of interfacial layer and clustering on the effective thermal conductivity of CuO–gear oil nanofluids. Exp Therm Fluid Sci. 2011;35(7):1490–5.

    Article  CAS  Google Scholar 

  19. Bhattacharya PR, Saha SK, Yadav A, Phelan PE. Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids. J Appl Phys. 2004;95(11):6492–4.

    Article  CAS  Google Scholar 

  20. Yu W, Choi SUS. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated maxwell model. J Nanoparticle Res. 2003;5(1/2):167–71.

    Article  CAS  Google Scholar 

  21. Bahiraei M, Mashaei PR. Using nanofluid as a smart suspension in cooling channels with discrete heat sources. J Therm Anal Calorim. 2015;119(3):2079–209.

    Article  CAS  Google Scholar 

  22. Xue Q. Model for effective thermal conductivity of nanofluids. Phys Lett A. 2003;307:313–317.

    Article  CAS  Google Scholar 

  23. Hemmat Esfe M, Naderi A, Akbari M, Afrand M, Karimipour A. Evaluation of thermal conductivity of COOH-functionalized MWCNTs/water via temperature and solid volume fraction by using experimental data and ANN methods. J Therm Anal Calorim. 2015;121(3):1273–8.

    Article  CAS  Google Scholar 

  24. Davis RH. The effective thermal conductivity of a composite material with spherical inclusions. Int J Thermophys. 1986;7:609–20.

    Article  CAS  Google Scholar 

  25. Murshed SMS, De Castro CAN, Sohel Murshed SM, de Castro CAN. Contribution of brownian motion in thermal conductivity of nanofluids. Proc World Congr Eng. 2011;3:1905–9.

    CAS  Google Scholar 

  26. Vaferi B, Samimi F, Pakgohar E, Mowla D. Artificial neural network approach for prediction of thermal behavior of nanofluids flowing through circular tubes. Powder Technol. 2014;267:1–10.

    Article  CAS  Google Scholar 

  27. Valinataj-Bahnemiri P, Ramiar A, Manavi SA, Mozaffari A. Heat transfer optimization of two phase modeling of nanofluid in a sinusoidal wavy channel using Artificial Bee Colony technique. Eng Sci Technol Int J. 2015;18(4):727–37.

    Article  Google Scholar 

  28. Hemmat Esfe M, Afrand M, Wongwises S, Naderi A, Asadi A, Rostamin S, Akbari M. Applications of feedforward multilayer perceptron artificial neural networks and empirical correlation for prediction of thermal conductivity of Mg(OH)2–EG using experimental data. Int Commun Heat Mass Transf. Jun 2015.

  29. Hemmat Esfe M, Saedodin S, Naderi A, Alirezaie A, Karimipour A, Wongwises S, Goodarzi M. Modeling of thermal conductivity of ZnO-EG using experimental data and ANN methods. Int Commun Heat Mass Transf. 2015;63:35–40.

    Article  CAS  Google Scholar 

  30. Safikhani H, Abbassi A, Khalkhali A, Kalteh M. Multi-objective optimization of nanofluid flow in flat tubes using CFD, Artificial Neural Networks and genetic algorithms. Adv Powder Technol. 2014;25(5):1608–17.

    Article  CAS  Google Scholar 

  31. Syam Sundar L, Venkata Ramana E, Singh MK, Sousa ACM. Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids for heat transfer applications: an experimental study. Int Commun Heat Mass Transfer. 2014;56:86–95.

    Article  CAS  Google Scholar 

  32. Jia-Fei Z, Zhong-Yang L, Ming-Jiang N, Ke-Fa C. Dependence of nanofluid viscosity on particle size and pH value. Chinese Phys Lett. 2009;26(6):066202.

    Article  Google Scholar 

  33. Hemmat Esfe M, Saedodin S, Sina N, Afrand M. Designing an artificial neural network to predict thermal conductivity and dynamic viscosity of ferromagnetic nanofluid. Int Commun Heat Mass Transf. 2015;68:50–7.

    Article  CAS  Google Scholar 

  34. Hemmat Esfe M, Saedodin S, Naderi A, Alirezaie A, Karimipour A, Wongwises S, Goodarzi M, bin Dahari M. Modeling of thermal conductivity of ZnO-EG using experimental data and ANN methods. Int Commun Heat Mass Transf. 2015;63:35–40.

    Article  CAS  Google Scholar 

  35. Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam. 1962;1(3):187–91.

    Article  CAS  Google Scholar 

  36. Lu Shih-Yuan, Lin Hway-Chi. Effective conductivity of composites containing aligned spheroidal inclusions of finite conductivity. J Appl Phys. 1996;79(9):6761–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Hemmat Esfe or Davood Toghraie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemmat Esfe, M., Ahangar, M.R.H., Toghraie, D. et al. Designing artificial neural network on thermal conductivity of Al2O3–water–EG (60–40 %) nanofluid using experimental data. J Therm Anal Calorim 126, 837–843 (2016). https://doi.org/10.1007/s10973-016-5469-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5469-8

Keywords

Navigation