Skip to main content
Log in

Thermodynamic properties of bismuth tellurites Bi2TeO5, Bi2Te4O11, Bi10Te2O19 and Bi16Te5O34

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The increasing importance and practical implementations of bismuth tellurites Bi2TeO5, Bi2Te4O11, Bi10Te2O19 and Bi16Te5O34 require sound knowledge on their thermodynamic properties like specific molar heat capacity (C p,m), enthalpy (\(\Delta_{{{\text{T}}^{\prime } }}^{\text{T}} H_{\text{m}}^{0}\)), entropy (\(\Delta_{{{\text{T}}^{\prime } }}^{\text{T}} S_{\text{m}}^{0}\)) and Gibbs energy (\(- \Delta_{{{\text{T}}^{\prime } }}^{\text{T}} G_{\text{m}}^{0}\)). The specific molar heat capacities of the tellurites synthesized were measured experimentally, and their dependence on temperature was determined by the least squares method. The coefficients a, b and c in the equation:

$$C_{\text{p}} = a + b \cdot T - c \cdot T^{ - 2}$$

were determined. The relative error between the experimentally determined specific molar heat capacity and the one calculated by the equation was found to be in the range 0.41–1.39 %. The coefficient of correlation (R) was close to unity for all the tellurites studied which indicated that the calculation method is adequate. The specific molar heat capacity (C p,m), enthalpy (\(\Delta_{{{\text{T}}^{\prime } }}^{\text{T}} H_{\text{m}}^{0}\)), entropy (\(\Delta_{{{\text{T}}^{\prime } }}^{\text{T}} S_{\text{m}}^{0}\)) and Gibbs energy (\(- \Delta_{{{\text{T}}^{\prime } }}^{\text{T}} G_{\text{m}}^{0}\)) were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Gospodinov G, Bogdanov B. Heats of formation of some metal tellurites. Acta Thermochim. 1983;71:387–90.

    Article  CAS  Google Scholar 

  2. Fornaro L. Bi2TeO5 as a novel material for ionizing radiation detection. Nuclear science symposium and medical imaging conference, Seoul, 27 Oct–2 Nov 2013. p. 1–3.

  3. Gospodinov G, Bogdanov B. Determination of the heats of formation of some basic metal tellurites and pyrotellurites. Thermochim Acta. 1984;81:349–51.

    Article  CAS  Google Scholar 

  4. Foldvari I, Peter A, Baraldi, E. Buffagni, Infrared absorption spectra of Tb3+-ions in Bi2TeO5 single crystal. 11th Europhysical conference on defects in insulating materials. 12–16 July Pecs, 2010;15:1–4.

  5. Foldvari I, Peter A, Voszka R. Growth and properties of Bi2TeO5 single crystals. J Cryst Growth. 1990;100:75–7.

    Article  CAS  Google Scholar 

  6. Schmidt P, Opperman H. Investigations to the ternary system Bi/Te/O, part 1: the phase diagram of the pseudobinary system Bi2O3–TeO2. Z Anorg Allg Chem. 1997;623:174–8.

    Article  CAS  Google Scholar 

  7. Schmidt P, Hennig C, Opperman H. Investigations on the ternary system Bi/Te/O, part III: determination of thermodynamic data of ternary compounds. Z Naturforsch B Chem Sci. 1999;54:252–60.

    Article  CAS  Google Scholar 

  8. Zhao G, Tian Y, Fan H, Zhang J, Hu L. Properties and structures of Bi2O3–B2O3–TeO2 glass. J Mater Sci Technol. 2013;29:209–14.

    Article  CAS  Google Scholar 

  9. Wu A, Hu J, Qian G, Lu B, Ge G, Tangaud L, Wu X. Bridjman growth of bismuth tellurite crystals. Bull Mater Sci. 2005;28:561–4.

    Article  CAS  Google Scholar 

  10. Berkaine N. Proprietes optiques non-lineaires de composes metastables du system TeO2–Bi2O3: apports de la chimie quantique. These pour obtenir le grade de docteurde l’universite de limoges, 2009.

  11. Szaller Z, Poppli L, Lovas G, Dodony I. Study of the formation of Bi2Te4O11. J Solid State Chem. 1996;121:251–6.

    Article  CAS  Google Scholar 

  12. Umlang V, Jansen A, Tierg P, Winsh S. Theorie und Praktische Anwendung von Complexbildern. Frankfurt am Main: Dechema; 1971.

    Google Scholar 

  13. Nazarenko J, Ermakov E. Analiticheskaya Khimia Selena i Telura. Moscow: Nauka; 1974.

    Google Scholar 

  14. Christian G, Dasgupta P, Schug K. Analytical chemistry. New York: Wiley; 2014.

    Google Scholar 

  15. Giler L. The tables interplanar spacings. Moscow: Nedra; 1966.

    Google Scholar 

  16. Bojanov E, Vuchkov I. Statistical methods for modeling and optimization of multifactor objects. Sofia: Technics; 1973.

    Google Scholar 

  17. Vuchkov I, Stoyanov S. Mathematical modeling and optimization of technology objects. Sofia: Technics; 1986.

    Google Scholar 

  18. Kafarov V. Cybernetics methods of chemistry and chemistry technology. Moscow: Chemistry; 1976.

    Google Scholar 

  19. Davim J. Design of experiments in production engineering. Switzerland: Springer International Publishing; 2016.

    Book  Google Scholar 

  20. Atanasova L, Baikusheva-Dimitrova G, Gospodinov G. Specific heat capacity and thermodynamic properties of CuTeO3 and HgTeO3. J Therm Anal Calorim. 2014;118:493–7.

    Article  CAS  Google Scholar 

  21. Koumok V. Methods for assessment of thermodynamic characteristics. Novosibirsk: Science; 1987.

    Google Scholar 

  22. Norman C. Entropy analyses of four familiar processes. J Chem Educ. 1988;65:700–64.

    Article  Google Scholar 

  23. Karapetianc M. Chemical thermodynamics. Moscow: Chemistry; 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lubka Atanasova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atanasova, L., Baikusheva-Dimitrova, G. & Gospodinov, G. Thermodynamic properties of bismuth tellurites Bi2TeO5, Bi2Te4O11, Bi10Te2O19 and Bi16Te5O34 . J Therm Anal Calorim 126, 829–835 (2016). https://doi.org/10.1007/s10973-016-5468-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5468-9

Keywords

Navigation