Skip to main content
Log in

Synthesis, microstructural properties and chemical stability of 3DOM structures of Sr1−xYxTiO3

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Yttrium-doped strontium titanate is a perovskite with a great potential to act as an anode material for solid oxide fuel cells. Two different synthesis procedures have been used to modify and optimize perovskite morphology. First way involved usage of surfactant TX-100 and led to obtainment of irregular structure with pore diameter of 150–200 nm, whereas in the second one, spheres of poly (methyl methacrylate) acted as soft templates and led to attainment of highly regular hollow perovskite network with pore diameter of around 110 nm. The discussion concerning the influence of yttrium on thermal properties of material, thermal expansion coefficients and chemical stability (in water–carbon dioxide rich atmosphere) were presented. It was found that introduction of yttrium into the strontium titanate leads to the decrease of SrTiO3 shrinkage temperature. Moreover, coupling TG measurements with mass spectrometry allowed to determinate behavior of pure and yttrium-doped strontium titanate in H2O and CO2 containing atmosphere. It was observed that addition of yttrium into SrTiO3 has no influence on materials stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tanaka H, Misono M. Advances in designing perovskite catalysts. Curr Opin Solid State Mat Sci. 2001;5:381–7.

    Article  CAS  Google Scholar 

  2. Suthirakun S, Ammal SCh, Xiao G, Chen F, Huang K, Loye H-C, Heyden A. Obtaining mixed ionic/electronic conductivity in perovskite oxides in reducing environment: a computational prediction for doped SrTiO3. Solid State Ion. 2012;228:37–45.

    Article  CAS  Google Scholar 

  3. Simwonis D, Tietz F, Stover D. Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells. Solid State Ion. 2000;132:241–51.

    Article  CAS  Google Scholar 

  4. Haile SM, Staneff G, Ryu KH. Non-stoichiometry, grain boundary transport and chemical stability of proton conducting perovskites. J Mater Sci. 2011;36:1149–60.

    Article  Google Scholar 

  5. Verbraeken MC, Ramos T, Agersted K, Ma Q, Savaniu CD, Sudireddy BR, Irvine JTS, Holtappels P, Tietz F. Modified strontium titanates: from defect chemistry to SOFC anodes. RSC Adv. 2015;5:1168–80.

    Article  CAS  Google Scholar 

  6. Medvedev D, Murashkina A, Pikalova E, Demin A, Podias A. Tsiakaras. BaCeO3: materials development, properties and application. Prog Mater Sci. 2014;60:72–129.

    Article  CAS  Google Scholar 

  7. Ryu KH, Haile SM. Chemical stability and proton conductivity of doped BaCeO3–BaZrO3 solid solutions. Solid State Ion. 1999;125:355–67.

    Article  CAS  Google Scholar 

  8. Pasierb P, Gajerski R, Osiadły M, Łącz A. Application of DTA-TG-MS for determination of chemical stability of BaCeO3-δ-based protonic conductors. J Therm Anal Calorim. 2014;117:683–91.

    Article  CAS  Google Scholar 

  9. Pasierb P, Drozdz-Ciesla E, Gajerski R, Labus S, Komornicki S, Rekas M. Chemical stability of Ba(Ce1−xTix)1−yYyO3 proton conducting solid electrolytes. J Therm Anal Calorim. 2009;96:475–80.

    Article  CAS  Google Scholar 

  10. Lytle FW. X-ray diffractometry of low-temperature phase transformations in strontium titanate. J Appl Phys. 1964;35:2212–5.

    Article  CAS  Google Scholar 

  11. Ruffa AR. Calculation of thermal expansion in insulating and ceramic materials. In: Larsen DC, editor. thermal expansion 7. West Lafayette: Purdue Research Foundation; 1982.

    Google Scholar 

  12. Tietz F. Thermal expansion of SOFC materials. Ionics. 1999;5:129–39.

    Article  CAS  Google Scholar 

  13. Drożdż-Cieśla E, Wyrwa J, Broś J, Rękas M. Structural, microstructural, thermal and electrical properties of Ni/YSZ cermet materials. J Therm Anal Calorim. 2012;108:1051–7.

    Article  Google Scholar 

  14. Ren TZ, Yuan ZY, Su BL. A novel macroporous structure of mesoporous titanias: synthesis and characterization. Colloid Surf A Physicochem Eng Asp. 2004;241:67–73.

    Article  CAS  Google Scholar 

  15. Fang JF, Xuan YM, Li Q. Preparation of three-dimensionally ordered macroporous perovskite materials. Chin Sci Bull. 2011;56:2156–61.

    Article  CAS  Google Scholar 

  16. Sadakane M, Asanuma T, Kubo J, Ueda W. Facile procedure to prepare three-dimensionally ordered macroporous (3DOM) perovskite-type mixed metal oxides by colloidal crystal templating method. Chem Mater. 2005;17:3546–51.

    Article  CAS  Google Scholar 

  17. Dufaud V, Lefebvre F. Inorganic hybrid materials with encapsulated polyoxometalates. Materials. 2010;3:682–703.

    Article  CAS  Google Scholar 

  18. Liu C, Zhang L, Deng J, Mu Q, Dai H, He H. Surfactant-aided hydrothermal synthesis and carbon dioxide adsorption behavior of three-dimensionally mesoporous calcium oxide single-crystallites with tri-, tetra-, and hexagonal morphologies. J Phys Chem C. 2008;112:19248–56.

    Article  CAS  Google Scholar 

  19. Athanasiou A, Mitsionis A, Skouras G, Todorova N, Trapalis C, Vaimakis T. Thermogravimetric study of the surfactant–diethanolamine–titanium isopropoxide system behavior. J Therm Anal Calorim. 2014;116:15–25.

    Article  CAS  Google Scholar 

  20. Ionita D, Cristea M, Banabic D. Viscoelastic behavior of PMMA in relation to deformation mode. J Therm Anal Calorim. 2015;120:1775–83.

    Article  CAS  Google Scholar 

  21. Hui S, Petric A. Evaluation of yttrium-doped SrTiO3 as an anode for solid oxide fuel cells. J Eur Ceram Soc. 2002;22:1673–81.

    Article  CAS  Google Scholar 

  22. Lee J, Orilall MC, Warren SC, Kamperman M, Disalvo FJ, Wiesner U. Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores. Nat Mater. 2008;7:222–8.

    Article  CAS  Google Scholar 

  23. Ptáček P, Bartoníčková E, Švec J, Opravil T, Šoukal F, Frajkorová F. The kinetics and mechanism of thermal decomposition of SrCO3 polymorphs. Ceram Int. 2015;14:115–26.

    Google Scholar 

  24. Robbins SA, Rupard RG, Weddle BJ, Maull TR, Gallagher PK. Some observations on the use of strontium carbonate as a temperature standard for DTA. Thermochim Acta. 1995;269(270):43–9.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science Center of the Republic of Poland, Grant No. 2014/14/EST5/00763.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Drożdż.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drożdż, E., Łańcucki, Ł. & Łącz, A. Synthesis, microstructural properties and chemical stability of 3DOM structures of Sr1−xYxTiO3 . J Therm Anal Calorim 125, 1225–1231 (2016). https://doi.org/10.1007/s10973-016-5463-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5463-1

Keywords

Navigation