Skip to main content
Log in

Synergistic flame retardant effects and mechanisms of aluminum diethylphosphinate (AlPi) in combination with aluminum trihydrate (ATH) in UPR

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The synergistic flame retardant effects of AlPi and ATH in UPR were investigated. The flammability and thermal stability of UPR composites were evaluated with LOI, UL-94 vertical burning, MCC and TG. The structure and morphology of filler and char residues were examined with SEM and FTIR. The interaction between AlPi and ATH was observed when the mass ratio of AlPi and ATH was 3:2 and LOI value of flame-retarded UPR increased to 30 and UL-94 rating passed V-0; however, the SEM showed that AlPi and ATH have a good dispersion in UPR. The pHRR of UPR-15AlPi/10ATH was 241.6 Wg−1, decreasing by 30.4 % compared with pure UPR. The experimental TG curve of AlPi/ATH in N2 was lower than calculated one at the second stage and had lower char residue at 700 °C, demonstrating interaction of AlPi and ATH during thermal degradation. The char residue of UPR-15AlPi/10ATH at 700° suggested that the interaction between AlPi and ATH strengthened the char-formation ability and thermal stability of UPR, so the SEM showed a strong and dense char surface. The FTIR of char residues at different temperatures showed that AlPi and ATH interactions changed the type of aluminum phosphates, making char residue of UPR/AlPi/ATH system increased eventually.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baudry A, Dufay J, Regneir N, Mortaigne B. Thermal degradation and fire behaviour of unsaturated polyesters with chain ends modified by dicyclopentadiene. Polym Degrad Stab. 1998;61:441.

    Article  CAS  Google Scholar 

  2. Tibiletti L, Longuet C, Ferry L, Coutelen P, Mas A, Robin JJ, et al. Thermal degradation and fire behaviour of unsaturated polyesters filled with metallic oxides. Polym Degrad Stab. 2011;96(1):67–75.

    Article  CAS  Google Scholar 

  3. Baskaran R, Sarojadevi M, Vijayakumar CT. Unsaturated polyester nanocomposites filled with nano alumina. J Mater Sci. 2011;46(14):4864–71.

    Article  CAS  Google Scholar 

  4. Nazare′ S, Kandola BK, Horrocks AR. Flame-retardant unsaturated polyester resin incorporating nanoclays. Polym Adv Technol. 2007;17(4):294–303.

    Article  Google Scholar 

  5. Ricciardi MR, Antonucci V, Zarrelli M, Giordano M. Fire behavior and smoke emission of phosphate-based inorganic fire-retarded polyester resin. Fire Mater. 2012;36:203–15.

    Article  CAS  Google Scholar 

  6. Horold S. Phosphorus flame retardants in thermoset resins. Polym Degrad Stab. 1999;64:427–31.

    Article  CAS  Google Scholar 

  7. Klinkows C, Zang L, Doring M. DOPO-based flame retardants: synthesis and flame retardant efficiency in polymers. Mater China. 2013;32(3):144–58.

    Google Scholar 

  8. Si M, Feng J, Hao J, Xu L, Du J. Synergistic flame retardant effects and mechanisms of nano-Sb2O3 in combination with aluminum phosphinate in poly (ethylene terephthalate). Polym Degrad Stab. 2014;100:70–8.

    Article  CAS  Google Scholar 

  9. Braun U, Bahr H, Sturm H, Schartel B. Flame retardancy mechanisms of metal phosphinates and metal phosphinates in combination with melamine cyanurate in glass‐fiber reinforced poly (1, 4‐butylene terephthalate): the influence of metal cation. Polym Adv Technol. 2008;19:680.

    Article  CAS  Google Scholar 

  10. Braun U, Shartel B, Fichera MA, Jager C. Flame retardancy mechanisms of AlPi in combination with melamine polyphosphate and zinc borate in glass-fibre-reinforced polyamide6,6. Polym Degrad Stab. 2007;92:1528–45.

    Article  CAS  Google Scholar 

  11. Liu X, Liu J, Cai S. Comparative study of Aluminum Diethylphosphinate and Aluminum Methylethylphosphinate-filled epoxy flame-retardant composites. Polym Compos. 2012;33:918–26.

    Article  CAS  Google Scholar 

  12. Wang Y, Zhang L, Yang Y, Cai X. The investigation of flammability, thermal stability, heat resistance and mechanical properties of unsaturated polyester resin using AlPi as flame retardant. J Therm Anal Calorim. 2015;122:1331–9.

    Article  CAS  Google Scholar 

  13. Duquesne S, Fontaine G, Cérin-Delaval O, Gardelle B, Tricot G, Bourbigot S. Study of the thermal degradation of an aluminium phosphinate–aluminium trihydrate combination. Thermochim Acta. 2013;551:175–83.

    Article  CAS  Google Scholar 

  14. Gallo E, Braun U, Schartel B, Russo P, Acierno D. Halogen-free flame retarded poly (butylene terephthalate) (PBT) using metal oxides/PBT nanocomposites in combination with aluminium phosphinate. Polym Degrad Stab. 2009;94(8):1245–53.

    Article  CAS  Google Scholar 

  15. Gallo E, Schartel B, Acierno D, Russo P. Flame retardant biocomposites: synergism between phosphinate and nanometric metal oxides. Eur Polym J. 2011;47(7):1390–401.

    Article  CAS  Google Scholar 

  16. Gallo E, Schartel B, Braun U, Russo P, Acierno D. Fire retardant synergisms between nanometric Fe2O3 and aluminum phosphinate in poly (butylenes terephthalate). Polym Adv Technol. 2011;22(12):2382–91.

    Article  CAS  Google Scholar 

  17. Mehmet D, Aysen Y, Erdal B. Synergistic effect of boron containing substances on flame retardancy and thermal stability of intumescent polypropylene composites. Polym Degrad Stab. 2010;95(12):2584–8.

    Article  Google Scholar 

  18. Zhang H, Westmoreland PR, Farris FJ, Coughlin EB, Plichta A, Brzozowski ZK. Thermal decomposition and flammability of fire-resistant, UV/visible-sensitive polyarylates, copolymers and blends. Polymer. 2002;43:5463–72.

    Article  CAS  Google Scholar 

  19. Zhang HQ, Farris RJ, Westmoreland PR. Low flammability and thermal decomposition behavior of poly (3,3-dihydroxybiphenylisophthalamide) and its derivatives. Macromolecules. 2003;36:3944–54.

    Article  CAS  Google Scholar 

  20. Benin V, Durganala S, Morgan AB. Synthesis and flame retardant testing of new boronated and phosphonated aromatic compounds. J Mater Chem. 2012;22(3):1180–90.

    Article  CAS  Google Scholar 

  21. Levchik SV, Weil ED. A review of recent progress in phosphorus-based flame retardants. J Fire Sci. 2006;24(5):345–64.

    Article  CAS  Google Scholar 

  22. Cinausero N, Azema N, Cochez M, Ferriol M, Essahli M, Ganachaud F, et al. Influence of the surface modification of alumina nanoparticles on the thermal stability and fire reaction of PMMA composites. Polym Adv Technol. 2008;19(6):701–9.

    Article  CAS  Google Scholar 

  23. Samyn F. Compréhension des procédés d’ignifugation du polyamide 6-Apport des nanocomposites aux systèmes retardateurs de flamme phosphorés, Ph.D. Thesis, Université de Lille1, 2007. http://ori.univ-lille1.fr/notice/view/univ-lille1-ori-5598.

  24. Braun U, Schartel B. Flame retardancy mechanisms of AlPi in combination with melamine cyanurate in glass-fibre-reinforced poly (1,4-butylene terephthalate). Macromol Mater Eng. 2008;293:206–17.

    Article  CAS  Google Scholar 

  25. Sullalti S, Colonna M, Berti C, Fiorini M, Karanam S. Effect of phosphorus based flame retardants on UL-94 and comparative tracking index properties of poly (butylene terephthalate). Polym Degrad Stab. 2012;97(4):566–72.

    Article  CAS  Google Scholar 

  26. Tjong SC, Bao SP. Preparation and nonisothermal crystallization behavior of polyamide 6/montmorillonite nanocomposites. J Polym Sci, Part B: Polym Phys. 2004;42(15):2878–91.

    Article  CAS  Google Scholar 

  27. Holland BJ, Hay JN. The thermal degradation of PET and analogous polyesters measured by thermal analysis–Fourier transform infrared spectroscopy. Polymer. 2002;43(6):1835–47.

    Article  CAS  Google Scholar 

  28. Balabanovich AI. Thermal decomposition study of intumescent additives: pentaerythritol phosphate and its blend with melamine phosphate. Thermochim Acta. 2005;435(2):188–96.

    Article  CAS  Google Scholar 

  29. Li H, Ning N, Zhang L, Wang Y, Liang W, Tian M. Different flame retardancy effects and mechanisms of aluminium phosphinate in PPO, TPU and PP. Polym Degrad Stab. 2014;105(105):86–95.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the generous supports by the following: National Natural Sciences Foundation of China, Grant No. 50973066; the Experiment center of Polymer science and engineering academy, Sichuan University; Tiannan Zhou doctor; Xinhui Science and Technology Co, LTD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xufu Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, L., Yang, Y. et al. Synergistic flame retardant effects and mechanisms of aluminum diethylphosphinate (AlPi) in combination with aluminum trihydrate (ATH) in UPR. J Therm Anal Calorim 125, 839–848 (2016). https://doi.org/10.1007/s10973-016-5459-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5459-x

Keywords

Navigation