Skip to main content
Log in

Thermally induced diphenylalanine cyclization in solid phase

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The reaction of cyclization of diphenylalanine in solid phase under heating was studied, which is a stage in formation of various nanostructures from this dipeptide. The temperature ranges of the reaction as well as of dehydration of clathrate of diphenylalanine with water were determined. Kinetic parameters of cyclization were estimated within the approaches of the non-isothermal kinetics (“model-free” kinetics and linear regression methods for detection of topochemical equation). The product of diphenylalanine cyclization was characterized by X-ray powder diffractometry, FTIR spectroscopy and TG/DSC analysis. Crystallization of diphenylalanine and cyclo(diphenylalanine) from methanol solutions was studied using atomic force microscopy. The results obtained may be useful for the design of new nanomaterials based on diphenylalanine at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Busseron E, Ruff Y, Moulin E, Giuseppone N. Supramolecular self-assemblies as functional nanomaterials. Nanoscale. 2013;5:7098–140.

    Article  CAS  Google Scholar 

  2. Hamley IW. Peptide nanotubes. Angew Chem Int Ed. 2014;53:6866–81.

    Article  CAS  Google Scholar 

  3. Ma H, Fei J, Li Q, Li J. Photo-induced reversible structural transition of cationic diphenylalanine peptide self-assembly. Small. 2015;11:1787–91.

    Article  CAS  Google Scholar 

  4. Guo C, Luo Y, Zhou R, Wei G. Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides. Nanoscale. 2014;6:2800–11.

    Article  CAS  Google Scholar 

  5. Afonso R, Mendes A, Gales L. Peptide-based solids: porosity and zeolitic behavior. J Mater Chem. 2012;22:1709–23.

    Article  CAS  Google Scholar 

  6. Soldatov DV, Moudrakovski IL, Grachev EV, Ripmeester JA. Micropores in crystalline dipeptides as seen from the crystal structure, He pycnometry, and 129Xe NMR spectroscopy. J Am Chem Soc. 2006;128:6737–44.

    Article  CAS  Google Scholar 

  7. Comotti A, Bracco S, Distefano G, Sozzani P. Methane, carbon dioxide and hydrogen storage in nanoporous dipeptide-based materials. Chem Commun. 2009;3:284–6.

    Article  Google Scholar 

  8. Soldatov DV, Moudrakovski IL, Ripmeester JA. Dipeptides as microporous materials. Angew Chem Int Ed. 2004;116:6468–71.

    Article  Google Scholar 

  9. Reches M, Gazit E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science. 2003;300:625–7.

    Article  CAS  Google Scholar 

  10. Ryu J, Kim S-W, Kang K, Park CB. Synthesis of diphenylalanine/cobalt oxide hybrid nanowires and their application to energy storage. ACS Nano. 2010;4:159–64.

    Article  CAS  Google Scholar 

  11. Adler-Abramovich L, Badihi-Mossberg M, Gazit E, Rishpon J. Characterization of peptide-nanostructure-modified electrodes and their application for ultrasensitive environmental monitoring. Small. 2010;6:825–31.

    Article  CAS  Google Scholar 

  12. Gorbitz CH. Microporous organic materials from hydrophobic dipeptides. Chem Eur J. 2007;13:1022–31.

    Article  Google Scholar 

  13. Kim S, Kim JH, Lee JS, Park CB. Beta-sheet-forming, self-assembled peptide nanomaterials towards optical, energy, and healthcare applications. Small. 2015;11:3623–40.

    Article  CAS  Google Scholar 

  14. Li Q, Ma H, Jia Y, Li J, Zhu B. Facile fabrication of diphenylalanine peptide hollow spheres using ultrasound-assisted emulsion templates. Chem Commun. 2015;51:7219–21.

    Article  CAS  Google Scholar 

  15. Gleichmann AJ, Wolff JM, Sheldrick WS. η5-Pentamethylcyclopentadienylruthenium(II) complexes containing η6-co-ordinated dipeptides with aromatic side chains. J Chem Soc Dalton Trans. 1995;1:1549–54.

    Article  Google Scholar 

  16. Walchshofer N, Sarciron ME, Garnier F, Delatour P, Petavy AF, Paris J. Anthelmintic activity of 3,6-dibenzyl-2,5-dioxopiperazine, cyclo(L-Phe-L-Phe). Amino Acids. 1997;12:41–7.

    Article  CAS  Google Scholar 

  17. Hill RJA, Sedman VL, Allen S, Williams PM, Paoli M, Adler-Abramovich L, Gazit E, Eaves L, Tendler SJB. Alignment of aromatic peptide tubes in strong magnetic fields. Adv Mater. 2007;19:4474–9.

    Article  CAS  Google Scholar 

  18. Wang M, Du L, Wu X, Xiong S, Chu PK. Charged diphenylalanine nanotubes and controlled hierarchical self-assembly. ACS Nano. 2011;5:4448–54.

    Article  CAS  Google Scholar 

  19. Mason TO, Chirgadze DY, Levin A, Adler-Abramovich L, Gazit E, Knowles TPJ, Buell AK. Expanding the solvent chemical space for self-assembly of dipeptide nanostructures. ACS Nano. 2014;8:1243–53.

    Article  CAS  Google Scholar 

  20. Li Q, Ma H, Wang A, Jia Y, Dai L, Li J. Self-assembly of cationic dipeptides forming rectangular microtubes and microrods with optical waveguiding properties. Adv Opt Mater. 2015;3:194–8.

    Article  CAS  Google Scholar 

  21. Lee JS, Yoon I, Kim J, Ihee H, Kim B, Park CB. Self-assembly of semiconducting photoluminescent peptide nanowires in the vapor phase. Angew Chem Int Ed. 2011;50:1164–7.

    Article  CAS  Google Scholar 

  22. Adler-Abramovich L, Aronov D, Beker P, Yevnin M, Stempler S, Buzhansky L, Rosenman G, Gazit E. Self-assembled arrays of peptide nanotubes by vapour deposition. Nat Nanotechnol. 2009;4:849–54.

    Article  CAS  Google Scholar 

  23. Adler-Abramovich L, Reches M, Sedman VL, Allen S, Tendler SJB, Gazit E. Thermal and chemical stability of diphenylalanine peptide nanotubes: implications for nanotechnological applications. Langmuir. 2006;22:1313–20.

    Article  CAS  Google Scholar 

  24. Ryu J, Park CB. High stability of self-assembled peptide nanowires against thermal, chemical, and proteolytic attacks. Biotechnol Bioeng. 2010;105:221–30.

    Article  CAS  Google Scholar 

  25. Ryu J, Park CB. High-temperature self-assembly of peptides into vertically well-aligned nanowires by aniline vapor. Adv Mater. 2008;20:3754–8.

    Article  CAS  Google Scholar 

  26. Huang R, Wang Y, Qi W, Su R, He Z. Temperature-induced reversible self-assembly of diphenylalanine peptide and the structural transition from organogel to crystalline nanowires. Nanoscale Res Lett. 2014;9:653–62.

    Article  Google Scholar 

  27. Ziganshin MA, Gerasimov AV, Gorbatchuk VV, Gubaidullin AT. Thermal analysis of clathrates of tripeptide LLL with organic compounds and water. J Therm Anal Calorim. 2015;119:1811–6.

    Article  CAS  Google Scholar 

  28. Ziganshin MA, Gubina NS, Gerasimov AV, Gorbatchuk VV, Ziganshina SA, Chuklanov AP, Bukharaev AA. Interaction of l-alanyl-l-valine and l-valyl-l-alanine with organic vapors: thermal stability of clathrates, sorption capacity and the change in the morphology of dipeptide films. Phys Chem Chem Phys. 2015;17:20168–77.

    Article  CAS  Google Scholar 

  29. Vyazovkin S, Burnham AK, Criado JM, Luis A, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  30. Vyazovkin S, Chrissafis K, Di Lorenzo M-R, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Suñol J-J. ICTAC kinetics committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.

    Article  CAS  Google Scholar 

  31. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217–21.

    Article  CAS  Google Scholar 

  32. Friedman HL. Kinetics of thermal degradation of charforming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci. 1964;6:183–95.

    Google Scholar 

  33. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  34. Ozawa T. Estimation of activation energy by isoconversion methods. Thermochim Acta. 1992;203:159–65.

    Article  CAS  Google Scholar 

  35. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand. 1966;70:478–523.

    Google Scholar 

  36. Logvinenko V, Drebushchak V, Pinakov D, Chekhova G. Thermodynamic and kinetic stability of inclusion compounds under heating. J Therm Anal Calorim. 2007;90:23–30.

    Article  CAS  Google Scholar 

  37. Logvinenko VA, Dybtsev DN, Bolotov VA, Fedin VP. Thermal decomposition of inclusion compounds on the base of the metal–organic framework [Zn2(bdc)2(dabco)]. J Therm Anal Calorim. 2015;121:491–7.

    Article  CAS  Google Scholar 

  38. Logvinenko VA, Aliev SB, Fedin VP. Thermal (kinetic) stability of the inclusion compound on the base of Li-contain MOF [Li2(H2btc)]·dioxane. J Therm Anal Calorim. 2015;120:53–8.

    Article  CAS  Google Scholar 

  39. Logvinenko V. Stability of supramolecular compounds under heating thermodynamic and kinetic aspects. J Therm Anal Calorim. 2010;101:577–83.

    Article  CAS  Google Scholar 

  40. Ziganshin MA, Efimova IG, Gorbatchuk VV, Ziganshina SA, Chuklanov AP, Bukharaev AA, Soldatov DV. Interaction of l-leucyl-l-leucyl-l-leucine thin film with water and organic vapors: receptor properties and related morphology. J Pept Sci. 2012;18:209–14.

    Article  CAS  Google Scholar 

  41. Gdaniec M, Liberek B. Structure of cyclo(-l-phenylalanyI-l-phenylalanyl-). Acta Cryst. 1986;C42:1343–5.

    CAS  Google Scholar 

  42. Jeon J, Scott M. Shell self-assembly of cyclo-diphenylalanine peptides in vacuum. J Phys Chem B. 2014;118:6644–52.

    Article  CAS  Google Scholar 

  43. Azuri I, Adler-Abramovich L, Gazit E, Hod O, Kronik L. Why are diphenylalanine-based peptide nanostructures so rigid? Insights from first principles calculations. J Am Chem Soc. 2014;136:963–9.

    Article  CAS  Google Scholar 

  44. Gorbitz CH. Nanotube formation by hydrophobic dipeptides. Chem Eur J. 2001;7:5153–9.

    Article  CAS  Google Scholar 

  45. Opfermann J. Kinetic analysis using multivariate non-linear regression. I. Basic concepts. J Therm Anal Calorim. 2000;60:641–58.

    Article  CAS  Google Scholar 

  46. Logvinenko VA, Sapchenko SA, Fedin VP. Thermal decomposition of inclusion compounds on the base of the metal–organic framework [Zn4(dmf)(ur)2(ndc)4]. Part I. J Therm Anal Calorim. 2014;117:747–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Russian Government Program of Competitive Growth of Kazan Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marat A. Ziganshin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziganshin, M.A., Gerasimov, A.V., Ziganshina, S.A. et al. Thermally induced diphenylalanine cyclization in solid phase. J Therm Anal Calorim 125, 905–912 (2016). https://doi.org/10.1007/s10973-016-5458-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5458-y

Keywords

Navigation