Skip to main content
Log in

Thermal stability and colour properties of CuZr4(PO4)6

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In present work, CuZr4(PO4)6, which is a complex phosphate of NASICON family, has been characterised as ceramic pigment. To this purpose, its thermal stability, colour properties and some other important pigment characteristics were studied. In order to obtain pure phase ceramic powder of CuZr4(PO4)6, several synthesis approaches were attempted. The thermal transformations in the reaction mixtures were investigated by DTA-TG and XRD analysis. Thermal stability of the obtained products was studied using heating microscopy, DTA-TG and XRD analysis. Colouring performance and lightfastness of CuZr4(PO4)6 were tested within commercial ceramic glazes, and its colour in powder and glaze is described by means of CIELAB and CIELCh systems. It is shown that CuZr4(PO4)6 ceramic powder has sufficient thermal stability and attractive colouring properties to be used as ceramic pigment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pet’kov V, Kurazhkovskaya VS, Orlova A, Spiridonova ML. Synthesis and crystal chemical characteristics of the structure of M0.5Zr2(PO4)3 phosphates. Cryst Chem. 2002;47:802–9.

    Google Scholar 

  2. Oikonomou P, Dedeloudis C, Stournaras CJ, Ftikos C. [NZP]: a new family of ceramics with low thermal expansion and tunable properties. J Eur Ceram Soc. 2007;27:1253–6.

    Article  CAS  Google Scholar 

  3. Goodenough JB, Hong HYP, Kafalas JA. Fast Na+-ion transport in skeleton structures. Mater Res Bull. 1976;11:203–20.

    Article  CAS  Google Scholar 

  4. Scheetz BE, Agrawal DK, Breval E, Roy R. Sodium zirconium phosphate (NZP) as a host structure for nuclear waste immobilization: a review. Waste Manag. 1994;14(6):489–505.

    Article  CAS  Google Scholar 

  5. Shchelokov I, Asabina E, Sukhanov M, Ermilova M, Orekhova N, Pet’kov V, Tereshchenko G. Synthesis, surface properties and catalytic activity of phosphates Cu0.5(y+1)FeyZr2–y(PO4)3 in methanol conversion. Solid State Sci. 2008;10:513–7.

    Article  CAS  Google Scholar 

  6. Serghini A, Brochu R, Ziyad M, Vedrine JC. Synthesis, characterisation and catalytic behaviour of Cu0.5M2(PO4)3 (M = Zr, Sn, Ti). J Alloys Compd. 1992;188:60–4.

    Article  CAS  Google Scholar 

  7. Ermilova MM, Sukhanov MV, Borisov RS, Orekhova NV, Pet’kov VI, Novikova SA, Il’in AB, Yaroslavtsev AB. Synthesis of the new framework phosphates and their catalytic activity in ethanol conversion into hydrocarbons. Catal Today. 2012;193:37–41.

    Article  CAS  Google Scholar 

  8. Komarneni S, Gould WW, inventors; The Penn State Research Foundation, assignee. High stability transition metal NZP type phosphates. United States patent US 006387832B1. 2002 May 14.

  9. Gorodylova N, Kosinová V, Dohnalová Ž, Bělina P, Šulcová P. New purple-blue ceramic pigments based on CoZr4(PO4)6. Dyes Pigm. 2013;98:393–404.

    Article  CAS  Google Scholar 

  10. Gorodylova N, Kosinová V, Šulcová P, Bělina P, Vlček M. Cr1/3Zr2P3O12 with unusual tetrahedral coordination of Cr(III): peculiarities of the formation, thermal stability and application as a pigment. Dalton Trans. 2014;43(41):15439–49.

    Article  CAS  Google Scholar 

  11. Gorodylova N, Šulcová P, Bosacka M, Filipek E, Vlček M. Heterovalent Zr4+-Cu2+ substitution in zirconium pyrophosphate: from theoretical models to synthesis and utilization. J Eur Ceram Soc. 2015;35:4293–305.

    Article  CAS  Google Scholar 

  12. Bussereau I, Olazcuaga R, Le Flem G, Hagenmuller P. Synthesis and properties of a new variety of Cu0.5Zr2(PO4)3 obtained by sol–gel technique. Eur J Solid State Inorg Chem. 1989;26:383–99.

    CAS  Google Scholar 

  13. Trojan M, Šulcová P. Binary Cu(II)–Mn(II) cyclo-tetraphosphates. Dyes Pigm. 2000;47:291–4.

    Article  CAS  Google Scholar 

  14. Trojan M, Beneš L. Binary cyclo-tetraphosphates Cu2−xMgxP4O12. Mater Lett. 1989;8:324–8.

    Article  CAS  Google Scholar 

  15. Taoufik I, Haddad M, Brochu R, Berger R. Location of Cu2+ ions in some protoned Nasicon-type phosphates. J Mater Sci. 1999;34:2943–7.

    Article  CAS  Google Scholar 

  16. Taoufic I, Haddad M, Nadiri A, Brochu R, Berger R. X and Q band EPR studies of Cu0.5Zr2(PO4)3 phosphates. J Phys Chem Solids. 1999;60:701–7.

    Article  Google Scholar 

  17. Christiansen RHW, Warner TE. A study of copper stoichiometry and phase relationships in the copper-zirconium phosphate system: CuZr2(PO4)3–Cu0.5Zr2(PO4)3. J Mater Sci. 2006;41:1197–205.

    Article  CAS  Google Scholar 

  18. Kazakos-Kijowski A, Komarneni S, Agrawal D, Roy R. Synthesis, crystal data and thermal stability of magnesium zirconium phosphate [MgZr4(PO4)6]. Mater Res Bull. 1988;23:1177–84.

    Article  CAS  Google Scholar 

  19. Chen F, Shen Q, Schoenung JM, Zhang L. Synthesis and pressureless sintering of zirconium phosphate ceramics. J Am Ceram Soc. 2008;91(10):3173–80.

    Article  CAS  Google Scholar 

  20. Tena MA. Characterization of MgxM2−xP2O7 (M=Cu and Ni) solid solutions. J Eur Ceram Soc. 2012;32:389–97.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataliia Gorodylova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorodylova, N., Kosinová, V., Dohnalová, Ž. et al. Thermal stability and colour properties of CuZr4(PO4)6 . J Therm Anal Calorim 126, 121–128 (2016). https://doi.org/10.1007/s10973-016-5415-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5415-9

Keywords

Navigation