Skip to main content
Log in

DSC and Raman study of DMPC liposomes in presence of Ibuprofen at different pH

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Ibuprofen (IbuH), 2-(4-isobutylphenyl) propionic acid, is a well-known nonsteroidal anti-inflammatory drug and is a promising antiatherosclerotic agent. Since IbuH has demonstrated to affect cell membranes structure, the study of the interaction between the membrane components, like phospholipids, and the drug, is of paramount interest. Moreover, liposomes can be used as drug carriers. In this paper, the effect of increasing amounts of Ibuprofen at neutral and acidic pH on the behaviour of dimyristoylphosphatidylcholine (DMPC) liposomes was investigated by means of Raman and differential scanning calorimetry (DSC) techniques. The results showed that pH influenced noticeably the liposome structure. A simple ‘solution-like’ model can explain the system when small or high IbuH or IbuNa (IbuH sodium salt forming at neutral and basic pH) amounts are present (IbuH/DMPC molar ratio ≤1/8.3 or ≥1/2.2 or IbuNa/DMPC molar ratio ≤1/17.5 or ≥1/4), whereas at intermediate amounts, two DSC peaks appeared: these systems could be described as a mixture of ‘phase II’ domains inserted within a structure of smaller and further ramified ‘phase I’ domains. Both DSC and Raman data suggested IbuH can penetrate within the apolar bilayer at pH 3, while at pH 7, the setting up of polar interactions of different strength between the carboxylic groups of IbuNa and the choline head of the DMPC, hamper a further penetration of the drug. Similar results were obtained both inserting directly IbuH molecules into liposomes as well as acidifying IbuNa water solutions, suggesting a possible use of liposomes as drug carriers when polarity is pH dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yang YH, Bai GY, Zhang X, Ye CH, Liu ML. H-1 NMR spectroscopic evidence of interaction between ibuprofen and lipoproteins in human blood plasma. Anal Biochem. 2004;324:292–7.

    Article  CAS  Google Scholar 

  2. Kovala-Demertzi D. Transition metal complexes of diclofenac with potentially interesting anti-inflammatory activity. J Inorg Biochem. 2000;79:153–7.

    Article  CAS  Google Scholar 

  3. Kovala-Demertzi D. Recent advances on non-steroidal antiinflammatory drugs, NSAIDs: organotin complexes of NSAIDs. J Organomet Chem. 2006;691:1767–74.

    Article  CAS  Google Scholar 

  4. Tita B, Bandur G, Tita D. Novel Cu(II) complex with non-steroidal anti-inflammatory drugs synthesis, characterization and thermal investigation of the complex with ibuprofen. Rev Chim. 2013;64:569–73.

    CAS  Google Scholar 

  5. Galico DA, Holanda BB, Perpetuo GL, Schnitzler E, Treu O, Bannach G. Thermal and spectroscopic studies on solid Ketoprofen of lighter trivalent lanthanides. J Therm Anal Calorim. 2012;108:371–9.

    Article  CAS  Google Scholar 

  6. Chatterjee NR, Kulkarni AA, Ghulekar SP. Synthesis, pharmacological activity and hydrolytic behavior of ethylenediamine and benzathine conjugates of ibuprofen. Eur J Med Chem. 2008;43:2819–23.

    Article  CAS  Google Scholar 

  7. Kobelnik M, Ribeiro CA, Dias DD, de Almeida S, Crespi MS, Capela JMV. Study of the thermal behavior of the transition phase of Co(II)–diclofenac compound by non-isothermal method. J Therm Anal Calorim. 2011;105:467–71.

    Article  CAS  Google Scholar 

  8. Manrique-Moreno M, Villena F, Sotomayor CP, Edwards AM, Munoz MA, Garidel P, Suwalsky M. Human cells and cell membrane molecular models are affected in vitro by the nonsteroidal anti-inflammatory drug ibuprofen. Biochim Biophys Acta Biomembr. 2011;1808:2656–64.

    Article  CAS  Google Scholar 

  9. Chakraborty H, Mondal S, Sarkar M. Membrane fusion: a new function of non-steroidal anti-inflammatory drugs. Biophys Chem. 2008;137:28–34.

    Article  CAS  Google Scholar 

  10. Giraud MN, Motta C, Romero JJ, Bommelaer G, Lichtenberger LM. Interaction of indomethacin and naproxen with gastric surface-active phospholipids: a possible mechanism for the gastric toxicity of nonsteroidal anti-inflammatory drugs (NSAIDs). Biochem Pharmacol. 1999;57:247–54.

    Article  CAS  Google Scholar 

  11. Lamprecht A, Saumet JL, Roux J, Benoit JP. Lipid nanocarriers as drug delivery system for ibuprofen in pain treatment. Int J Pharm. 2004;278:407–14.

    Article  CAS  Google Scholar 

  12. Hussain MD, Saxena V, Brausch JF, Talukder RM. Ibuprofen-phospholipids solid dispersion: improved dissolution and gastric tolerance. Int J Pharm. 2012;422:290–4.

    Article  CAS  Google Scholar 

  13. Du LW, Liu XH, Huang WM, Wang EK. A study on the interaction between ibuprofen and bilayer lipid membrane. Electrochim Acta. 2006;51:5754–60.

    Article  CAS  Google Scholar 

  14. Bonora S, Di Foggia M, Iafisco M. DSC and Raman study on the interaction of DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl)-ethane] with liposomal phospholipids. Pestic Biochem Physiol. 2008;92:144–9.

    Article  CAS  Google Scholar 

  15. Bonora S, Di Foggia M, Markarian SA, Tugnoli V. Vibrational and calorimetric study on the effect of di-n-propylsulfoxide (DPSO) on DMPC, DPPC, DMPE liposomes. J Mol Struct. 2009;935:115–22.

    Article  CAS  Google Scholar 

  16. Di Foggia M, Bonora S, Tugnoli V. DSC and Raman study on the effect of lysozyme and bovine serum albumin on phospholipids liposomes. J Therm Anal Chem. 2013;111:1871–80.

    Article  Google Scholar 

  17. Domanska U, Pobudkowska A, Pelczarska A, Gierycz P. pKa and solubility of drugs in water, ethanol, and 1-octanol. J Phys Chem B. 2009;113:8941–7.

    Article  CAS  Google Scholar 

  18. Hadgraft J, Valenta C. pH, pK(a) and dermal delivery. Int J Pharm. 2000;200:243–7.

    Article  CAS  Google Scholar 

  19. Bonora S, Torreggiani A, Fini G. DSC and Raman study on the interaction between polychlorinated biphenyls (PCB) and phospholipid liposomes. Thermochim Acta. 2003;408:55–65.

    Article  CAS  Google Scholar 

  20. Mastrolonardo G, Francioso O, Di Foggia M, Bonora S, Rumpel C, Certini G. Application of thermal and spectroscopic techniques to assess fire-induced to soil organic matter in a Mediterranean forest. J Geochem Explor. 2014;143:174–82.

    Article  CAS  Google Scholar 

  21. Lozano-Chaves E, Hernandez-Artiga MP, Muñoz-Leyva A. Spectrophotometric phosphate determination in urine by ligand exchange extraction. Mikrochim Acta. 1994;116:91–9.

    Article  CAS  Google Scholar 

  22. Pentak D. On the reversibility of the phase-transitions in lipid-water systems. Thermochim Acta. 2014;584:36–44.

    Article  CAS  Google Scholar 

  23. Lhert F, Capelle F, Blaudez D, Heywang C, Turlet JM. Raman spectroscopy of phospholipids black films. J Phys Chem B. 2000;104:11704–7.

    Article  CAS  Google Scholar 

  24. Bagatolli L, Sunil Kumar PB. Phase behavior of multicomponent membranes: experimental and computational techniques. Soft Matter. 2009;5:3234–48.

    Article  CAS  Google Scholar 

  25. Garidel P, Johann C, Blume A. Thermodynamics of lipid organization and domani formation in phospholipids bilayers. J Liposome Res. 2000;10:131–58.

    Article  CAS  Google Scholar 

  26. Heerklotz H. The microcalorimetry of lipid membranes. J Phys: Condens Matter. 2004;16:R441–68.

    CAS  Google Scholar 

  27. Lucio M, Lima JLFC, Reis S. Drug-membrane interactions: significance for medicinal chemistry. Curr Med Chem. 2010;17:1795–809.

    Article  CAS  Google Scholar 

  28. Bertoluzza A, Bonora S, Fini G, Francioso O, Morelli MA. Interaction of bipyridilium herbicides with model membranes. Chem Phys Lipids. 1995;75:137–43.

    Article  CAS  Google Scholar 

  29. Carrer DC, Maggio B. Phase behavior and molecular interactions in misture of ceramide with dipalmitoylposphatidylcholine. J Lipid Res. 1999;40:1979–89.

    Google Scholar 

  30. Shinoda W, Namiki N, Okazaki SJ. Molecular dynamics study of a lipid bilayer: convergence, structure, and long-time dynamics. J Chem Phys. 1997;106:5731–43.

    Article  CAS  Google Scholar 

  31. Bonora S, Ercoli A, Torreggiani A, Fini G. Influence of sebacate plasticizers on the thermal behaviour of dipalmitoylphosphatidylcholine liposomes. Thermochim Acta. 2002;385:51–61.

    Article  CAS  Google Scholar 

  32. Castelli F, Messina C, Pignatello R, Puglisi G. Effect of pH on diclofenac release from Eudragit RS100® microparticles. A kinetic study by DSC. Drug Deliv. 2001;8:173–7.

    Article  CAS  Google Scholar 

  33. Moreno MM, Suwalsky M, Villena F, Garidel P. Effects of the non-steroidal anti-inflammatory drug naproxen on human erythtocytes and on cell membrane molecular models. Biophys Chem. 2010;147:53–8.

    Article  Google Scholar 

  34. Khajeh A, Modarress H. The influence of cholesterol on interactions and dynamics of ibuprofen in a lipid bilayer. Biochim Biophys Acta. 2014;1838:2431–8.

    Article  CAS  Google Scholar 

  35. Alsop RJ, Armstrong CL, Maqbool A, Toppozini L, Dies H, Rheinstaedter MC. Cholesterol expels ibuprofen from the hydrophobic membrane core and stabilizes lamellar phases in lipid membranes containing ibuprofen. Soft Matter. 2015;11:4756–67.

    Article  CAS  Google Scholar 

  36. Castelli F, Messina C, Sarpietro MG, Pignatello R, Puglisi G. Eudragit as controlled release system for anti-inflammatory drugs. A comparison between DSC and dialysis experiments. Termochim Acta. 2003;400:227–34.

    Article  CAS  Google Scholar 

  37. Box CB, Horton RA, Harris JM. Detection of drug-membrane interactions in individual vesicles by confocal Raman Spectroscopy. Anal Chem. 2006;78:4918–24.

    Article  Google Scholar 

  38. Moreno MM, Garidel P, Suwalsky M, Howe J, Brandenburg K. The membrane-activity of ibuprofen, diclofenac, and naproxen: a physico-chemical study with lecithin phospholipids. Biochim Biophys Acta. 2009;1788:1296–303.

    Article  CAS  Google Scholar 

  39. Boggara MB, Krishnamoorti R. Small-angle neutron scattering studies of phospholipids-NSAIDS adducts. Langmuir. 2009;26:5734–45.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from Bologna University (Ricerca fondamentale orientata—ex 60 %).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Di Foggia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Foggia, M., Bonora, S., Tinti, A. et al. DSC and Raman study of DMPC liposomes in presence of Ibuprofen at different pH. J Therm Anal Calorim 127, 1407–1417 (2017). https://doi.org/10.1007/s10973-016-5408-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5408-8

Keywords

Navigation