Skip to main content
Log in

Blended cements consisting of Portland cement–slag–silica fume–metakaolin system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present study, hydration of four-compound systems consisting of Portland cement and three supplementary cementitious materials : silica fume, blast-furnace slag, and metakaolin, has been investigated by means of isothermal calorimetry and thermal analysis. Substitution of Portland cement was achieved at 25, 30, and 35 mass% by cementitious supplementary materials. Owing to the high specific surface, the silica fume eventuated in more distinctive demonstration of pozzolanic reactions. It decreased C/S ratio and led to the formation of hydration phases with C/S ≅ 1, which is demonstrated by wollastonite crystallization at higher temperatures. Enhanced formation of gehlenite hydrate was proved by DTG when blended cements included higher content of metakaolin and blast-furnace slag. Pozzolanic materials increased the compressive strength of particular blended samples and thus overcame the dilution effect especially at long term of curing. Presented quaternary blended samples in comparison with ordinary Portland cement thus allowed the formation of more thermal stable hydration products and can be considered as promising materials for the development of special concrete also for hydrothermal applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Antoni M, Rossen J, Martirena F, Scrivener K. Cement substitution by a combination of metakaolin and limestone. Cem Concr Res. 2012;42:1579–89.

    Article  CAS  Google Scholar 

  2. Moulin E, Blanc P, Sorrentino D. Influence of key cement chemical parameters on the properties of metakaolin. Cem Concr Compos. 2001;23:463–9.

    Article  CAS  Google Scholar 

  3. Rahhal V, Cabrera O, Talero R, Delgado A. Calorimetry of portland cement with silica fume and gypsum additions. J Therm Anal Calorim. 2007;87(2):331–6.

    Article  CAS  Google Scholar 

  4. Opravil T, Ptaček P, Šoukal F, Havlica J, Brandštetr J. The synthesis and characterization of an expansive admixture for M-type cements I. The influence of free CaO to the formation of ettringite. J Therm Anal Calorim. 2013;111:517–26.

    Article  CAS  Google Scholar 

  5. Feng J, Liu S, Wang Z. Effects of ultrafine fly ash on the properties of high-strength concrete. J Therm Anal Calorim. 2015;121:1213–23.

    Article  CAS  Google Scholar 

  6. Moser RD, Jayapalan AR, Garas VY, Kurtis KE. Assessment of binary and ternary blends of metakaolin and Class C fly ash for alkali-silica reaction mitigation in concrete. Cem Concr Res. 2010;40:1664–72.

    Article  CAS  Google Scholar 

  7. Snelson DG, Wild S, O’Farrell M. Heat of hydration of Portland Cement–Metakaolin–Fly ash (PC–MK–PFA) blends. Cem Concr Res. 2008;38:832–40.

    Article  CAS  Google Scholar 

  8. Li Z, Ding Z. Property improvement of Portland cement by incorporating with metakaolin and slag. Cem Concr Res. 2003;33:579–84.

    Article  CAS  Google Scholar 

  9. Maheswaran S, Iyer NR, Palani GS, Alagu Pandi R, Divina Dikar D, Kalaiselvam S. Effect of high temperature on the properties of ternary blended cement pastes and mortars. J Therm Anal Calorim. 2015;122:775–86.

    Article  CAS  Google Scholar 

  10. Torréns-Martín D, Fernández-Carrasco L, Blanco-Varela MT. Thermal analysis of blended cements. J Therm Anal Calorim. 2015;121:1197–204.

    Article  Google Scholar 

  11. Poona CS, Lama L, Koua SC, Wonga YL, Wong R. Rate of pozzolanic reaction of metakaolin in high-performance cement pastes. Cem Concr Res. 2001;31:1301–6.

    Article  Google Scholar 

  12. Curcio F, Deangelis BA, Pagliolico S. Metakaolin as a pozzolanic microfiller for high-performance mortars. Cem Concr Res. 1998;28(6):803–9.

    Article  CAS  Google Scholar 

  13. Chen Y, Gu D. Selection of superplasticizer for high performance concrete. Concrete. 1997;5:28–31.

    Google Scholar 

  14. Frias M, Cabrera J. Pore size distribution and degree of hydration of metakaolin–cement pastes. Cem Concr Res. 2000;30(4):561–9.

    Article  CAS  Google Scholar 

  15. Sonebi M, Lachemi M, Hossain KMA. Optimisation of rheological parameters and mechanical properties of superplasticised cement grouts containing metakaolin and viscosity modifying admixture. Constr Build Mater. 2013;38:126–38.

    Article  Google Scholar 

  16. Khan SU, Nuruddin MF, Ayub T, Shafiq N. Effects of different mineral admixtures on the properties of fresh concrete. Hindawi Publishing Corporation. Sci World J. 2014;. doi:10.1155/2014/986567.

    Google Scholar 

  17. Largent R. Evaluation of pozzolanic activity-attempt at finding a test. Bulletin De Liaison Des Lab Des Ponts Et Chaussees; 1978. pp. 61–65.

  18. Duan P, Shui Z, Chen W, Shen C. Effects of metakaolin, silica fume and slag on pore structure, interfacial transition zone and compressive strength of concrete. Constr Build Mater. 2013;44:1–6.

    Article  CAS  Google Scholar 

  19. Zhang T, Yu O, Wei J, Gao P, Zhang P. Study on optimization of hydration process of blended cement. J Therm Anal Calorim. 2012;107:489–98.

    Article  CAS  Google Scholar 

  20. Wild S, Khatib JM, Jones A. Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete. Cem Concr Res. 1996;26(10):1537–44.

    Article  CAS  Google Scholar 

  21. Menzel CA. Strength and volume change of steam-cured portland cement mortar and concrete. J Am Concr I. 1934;31:221–44.

    Google Scholar 

  22. Mitsuda T, Kobayakawa S, Toraya H. Characterization of hydrothermally formed C–S–H. In: Proceedings of the eighth international congress of the chemistry of cement, Rio de Janeiro; 1986.

  23. Palou M, Živica V, Ifka T, Boháč M, Zmrzly M. Effect of hydrothermal curing on early hydration of G-Oil well cement. J Therm Anal Calorim. 2014;116(2):597–603.

    Article  CAS  Google Scholar 

  24. Palou MT, Šoukal F, Boháč M, Šiler P, Ifka T, Živica V. Performance of G-Oil well cement exposed to elevated hydrothermal curing conditions. J Therm Anal Calorim. 2014;118:865–74.

    Article  CAS  Google Scholar 

  25. Boháč M, Palou M, Novotný R, Másilko J, Všianský D, Staněk T. Investigation on early hydration of ternary Portland cement-blast-furnace slag-metakaolin blends. Constr Build Mater. 2014;64:333–41.

    Article  Google Scholar 

  26. Mostafa NY, Brown PW. Heat of hydration of high reactive pozzolans in blended cements: isothermal conduction calorimetry. Thermochim Acta. 2005;435:162–7.

    Article  CAS  Google Scholar 

  27. Sanchez de Rojas M, Frias M. The pozzolanic activity of different materials, its influence on the hydration heat in mortars. Cem Concr Res. 1996;26(2):203–13.

    Article  CAS  Google Scholar 

  28. Silica Fume Association: silica fume manual. 38860 Sierra Lane, Lovettsville, VA 20180, USA; 2005.

  29. Siler P, Kratky J, De Belie N. Isothermal and solution calorimetry to assess the effect of superplasticizers and mineral admixtures on cement hydration. J Therm Anal Calorim. 2012;107:303–13.

    Article  Google Scholar 

  30. Walker R, Pavía S. Physical properties and reactivity of pozzolans, and their influence on the properties of lime–pozzolan pastes. Mater Struct. 2011;44:1139–50.

    Article  CAS  Google Scholar 

  31. Krajči Ľ, Janotka I, Puertas F, Palacios M, Kuliffayová M. Long-term properties of cement composites with various metakaolin content. Ceram-Silik. 2013;57(1):74–81.

    Google Scholar 

  32. Coleman NJ, McWhinnie WR. The solid state chemistry of metakaolin-blended ordinary Portland cement. J Mater Sci. 2000;35(11):2701–10.

    Article  CAS  Google Scholar 

  33. Changling H, Osbaeck B, Makovicky E. Pozzolanic reaction of six principal clay minerals: activation reactivity assessments and technological effects. Cem Concr Res. 1995;25(8):1691–702.

    Article  Google Scholar 

  34. Prince W, Edwards-Lajnef M, Aïtcin P-C. Interaction between ettringite and a polynaphthalene sulfonate superplasticizer in a cementitious paste. Cem Concr Res. 2002;32:79–85.

    Article  CAS  Google Scholar 

  35. Talero R. Comparative XRD analysis ettringite originating from pozzolan and from portland cement. Cem Concr Res. 1996;26(8):1277–83.

    Article  CAS  Google Scholar 

  36. Lagier F, Kurtis KE. Influence of Portland cement composition on early age reactions with metakaolin. Cem Concr Res. 2007;37:1411–7.

    Article  CAS  Google Scholar 

  37. Knudsen T. The dispersion model for hydration of portland cement 1. General concepts. Cem Concr Res. 1984;14:622–30.

    Article  CAS  Google Scholar 

  38. Rahhal VF, Irassar EF, Trezza MA, Bonavetti VL. Calorimetric characterization of Portland limestone cement produced by intergrinding. J Therm Anal Calorim. 2012;109:153–61.

    Article  CAS  Google Scholar 

  39. Malhotra VM, Mehta PK. Pozzolanic and cementitious materials. Amsterdam: Gordon and Breach Publishers; 1996.

    Google Scholar 

  40. Fares H, Remond S, Noumowe A, Cousture A. High temperature behavior of self-consolidating concrete microstructure and physicochemical properties. Cem Concr Res. 2010;40:488–96.

    Article  CAS  Google Scholar 

  41. Ibrahim IA, ElSersy HH, Abadir MF. The use of thermal analysis in the approximate determination of the cement content in concrete. J Therm Anal Calorim. 2004;76:713–8.

    Article  CAS  Google Scholar 

  42. Silva de Souzab LM, Fairbairn EMR, Filho RDT, Cordeiro GC. Influence of initial CaO/SiO2 ratio on the hydration of rice husk ash-Ca(OH)2 and sugar cane bagasse ash-Ca(OH)2 pastes. Quim Nova. 2014;37(10):1600–5.

    Google Scholar 

  43. Bažant ZP, Kaplan MF. Concrete at high temperatures. London: Longman Addison-Wesley; 1996.

    Google Scholar 

  44. Matsushita F, Aono Y, Shibata S. Carbonation degree of autoclaved aerated concrete. Cem Concr Res. 2000;30:1741–5.

    Article  CAS  Google Scholar 

  45. Kuliffayová M, Krajči Ľ, Janotka I, Šmatko V. Thermal behaviour and characterization of cement composites with burnt kaolin sand. J Therm Anal Calorim. 2012;108:425–32.

    Article  Google Scholar 

  46. Habert G, Choupay N, Montel JM, Guillaume D, Escadeillas G. Effects of the secondary minerals of the pozzolans on their Pozzolanic activity. Cem Concr Res. 2008;7:963–75.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by courtesy of the Slovak Grant Agency VEGA Nos. 2/0082/14, 1/0696/15 and by the project Sustainability and Development REG LO1211 addressed to the Materials Research Center at FCH VUT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin T. Palou.

Additional information

Cement nomenclature is used when C = CaO, S = SiO2, A = Al2O3, F = Fe2O3, \( {\bar{\text{S}}} \) = SO3, H = H2O.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palou, M.T., Kuzielová, E., Novotný, R. et al. Blended cements consisting of Portland cement–slag–silica fume–metakaolin system. J Therm Anal Calorim 125, 1025–1034 (2016). https://doi.org/10.1007/s10973-016-5399-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5399-5

Keywords

Navigation