Skip to main content

Relaxation dynamics of Fe55Cr10Mo14C15B6 metallic glass explored by mechanical spectroscopy and calorimetry measurements

Abstract

In this work, the mechanical relaxation dynamics of Fe55Cr10Mo14C15B6 metallic glass is explored by mechanical spectroscopy. The temperature-dependent loss modulus E″(T) shows the features of β relaxation well below glass transition temperature T g. This β relaxation can be well described in the framework of anelastic theory by a thermal activated process with activation energy of 165 kJ mol−1. Structural relaxation, also known as physical aging, has a large effect on the glass properties. The activation energy spectrum of structural relaxation is characterized by differential scanning calorimetry measuring the heat flow difference between as-quenched and relaxed states. The obtained energy spectrum is well described by a lognormal distribution with maximum probability activation energy of 176 kJ mol−1. The obtained activation energy of structural relaxation is similar to that of β relaxation observed from mechanical spectroscopy. Both values are also close to the Johari–Goldstein β relaxation estimated by the empirical rule E β  = 26RT g.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Amir A, Oreg Y, Imry Y. On relaxations and aging of various glasses. Proc Natl Acad Sci. 2012;109:1850–5.

    CAS  Article  Google Scholar 

  2. Herzer G. Modern soft magnets: amorphous and nanocrystalline materials. Acta Mater. 2013;61:718–34.

    CAS  Article  Google Scholar 

  3. Duarte MJ, Klemm J, Klemm SO, Mayrhofer KJJ, Stratmann M, Borodin S, Romero AH, Madinehei M, Crespo D, Serrano J, Gerstl SSA, Choi PP, Raabe D, Renner FU. Element-resolved corrosion analysis of stainless-type glass-forming steels. Science. 2013;341:372.

    CAS  Article  Google Scholar 

  4. Inoue A. Bulk amorphous alloys with soft and hard magnetic properties. Mater Sci Eng, A. 1997;226–228:357–63.

    Article  Google Scholar 

  5. Inoue A, Koshiba H, Zhang T, Makino A. Wide supercooled liquid region and soft magnetic properties of Fe56Co7Ni7Zr0-10Nb(or Ta)0-10B20 amorphous alloys. J Appl Phys. 1998;83:1967–74.

    CAS  Article  Google Scholar 

  6. Suryanarayana C, Inoue A. Iron-based bulk metallic glasses. Int Mater Rev. 2013;58:131–66.

    CAS  Article  Google Scholar 

  7. Gu XJ, Poon SJ, Shiflet GJ. Mechanical properties of iron-based bulk metallic glasses. J Mater Res. 2007;22:344–51.

    CAS  Article  Google Scholar 

  8. Gu XJ, Poon SJ, Shiflet GJ, Widom M. Ductility improvement of amorphous steels: roles of shear modulus and electronic structure. Acta Mater. 2008;56:88–94.

    CAS  Article  Google Scholar 

  9. Gu XJ, McDermott AG, Poon SJ, Shiflet GJ. Critical Poisson’s ratio for plasticity in Fe–Mo–C–B–Ln bulk amorphous steel. Appl Phys Lett. 2006;88:211905.

    Article  Google Scholar 

  10. Lu ZP, Liu CT, Thompson JR, Porter WD. Structural amorphous steels. Phys Rev Lett. 2004;92:245503.

    CAS  Article  Google Scholar 

  11. Madinehei M, Bruna P, Duarte MJ, Pineda E, Klemm J, Renner FU. Glass-formation and corrosion properties of Fe–Cr–Mo–C–B glassy ribbons with low Cr content. J Alloys Compd. 2014;615:S128–31.

    CAS  Article  Google Scholar 

  12. Duarte MJ, Kostka A, Jimenez JA, Choi P, Klemm J, Crespo D, Raabe D, Renner FU. Crystallization, phase evolution and corrosion of Fe-based metallic glasses: an atomic-scale structural and chemical characterization study. Acta Mater. 2014;71:20–30.

    CAS  Article  Google Scholar 

  13. Zhai F, Pineda E, Duarte MJ, Crespo D. Role of Nb in glass formation of Fe–Cr–Mo–C–B–Nb BMGs. J Alloys Compd. 2014;604:157–63.

    CAS  Article  Google Scholar 

  14. Zhai F. Investigation on the synthesis and characterization of amorphous steels. Ph.D. Thesis. Universitat Politècnica de Catalunya. 2015.

  15. Chen M. Mechanical behavior of metallic glasses: microscopic understanding of strength and ductility. Annu Rev Mater Res. 2008;38:445–69.

    CAS  Article  Google Scholar 

  16. Ashby MF, Greer AL. Metallic glasses as structural materials. Scr Mater. 2006;54:321–6.

    CAS  Article  Google Scholar 

  17. Gong P, Yao K, Zhao S. Cu alloying effect on crystallization kinetics of Ti41Zr5Be28Fe6 bulk metallic glass. J Therm Anal Calorim. 2015;121:697–704.

    CAS  Article  Google Scholar 

  18. Lu XC, Li HY. Kinetics of non-isothermal crystallization in Cu50Zr43Al7 and (Cu50Zr43Al7)95Be5 metallic glasses. J Therm Anal Calorim. 2014;115:1089–97.

    CAS  Article  Google Scholar 

  19. Wu J, Pan Y, Pi J. On non-isothermal kinetics of two Cu based bulk metallic glasses. J Therm Anal Calorim. 2014;115:267–74.

    CAS  Article  Google Scholar 

  20. Schuh CA, Hufnagel TC, Ramamurty U. Mechanical behavior of amorphous alloys. Acta Mater. 2007;55:4067–109.

    CAS  Article  Google Scholar 

  21. Argon AS. Plastic deformation in metallic glasses. Acta Metall. 1979;27:47–58.

    CAS  Article  Google Scholar 

  22. Spaepent FA. Mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 1976;25:407–15.

    Article  Google Scholar 

  23. Pineda E, Bruna P, Ruta B, Gonzalez-Silveira M, Crespo D. Relaxation of rapidly quenched metallic glasses: effect of the relaxation state on the slow low temperature dynamics. Acta Mater. 2013;61:3002–11.

    CAS  Article  Google Scholar 

  24. Qiao JC, Pelletier JM. Dynamic mechanical relaxation in bulk metallic glasses: a review. J Mater Sci Technol. 2014;30:523–45.

    Article  Google Scholar 

  25. Yu HB, Wang WH, Samwer K. The beta relaxation in metallic glasses: an overview. Mater Today. 2013;16:183–91.

    CAS  Article  Google Scholar 

  26. Wang WH, Wen P, Liu XF. The excess wing of bulk metallic glass forming liquids. J Non Cryst Solids. 2006;352:5103–9.

    CAS  Article  Google Scholar 

  27. Liu C, Pineda E, Crespo D. Mechanical relaxation of metallic glasses: an overview of experimental data and theoretical models. Metals. 2015;5:1073–111.

    CAS  Article  Google Scholar 

  28. Ju JD, Atzmon MA. Comprehensive atomistic analysis of the experimental dynamic-mechanical response of a metallic glass. Acta Mater. 2014;74:183–8.

    CAS  Article  Google Scholar 

  29. Ju JD, Atzmon MA. Atomistic interpretation of the dynamic response of glasses. MRS Commun. 2014;4:63–6.

    CAS  Article  Google Scholar 

  30. Yu HB, Samwer K, Wang WH, Bai HY. Chemical influence on β-relaxations and the formation of molecule-like metallic glasses. Nat Commun. 2013;4:2204.

    Google Scholar 

  31. Yu H, Wang W, Bai H, Samwer K. The β relaxation in metallic glasses. Nat Sci Rev. 2014;1:429–61.

    Article  Google Scholar 

  32. Kahl A, Koeppe T, Bedorf D, Richert R, Lind ML, Demetriou MD, Johnson WL, Arnold W, Samwer K. Dynamical and quasistatic structural relaxation paths in Pd40Ni40P20 glass. Appl Phys Lett. 2009;95:201903.

    Article  Google Scholar 

  33. Wang Z, Wen P, Huo LS, Bai HY, Wang WH. Signature of viscous flow units in apparent elastic regime of metallic glasses. Appl Phys Lett. 2012;101:121906.

    Article  Google Scholar 

  34. Rao KJ. Structural chemistry of glasses. Amsterdam: Elsevier; 2002.

    Google Scholar 

  35. Hu L, Yue Y. Secondary relaxation in metallic glass formers: its correlation with the genuine Johari–Goldstein relaxation. J Phys Chem C. 2009;113:15001–6.

    CAS  Article  Google Scholar 

  36. Johari GP. Localized molecular motions of beta-relaxation and its energy landscape. J Non Cryst Solids. 2002;307–310:317–25.

    Article  Google Scholar 

  37. Egorushkin VE, Mel’nikova NV. Structural relaxation in amorphous metallic alloys. Zh Eksp Teor Fiz. 1993;103:555.

    CAS  Google Scholar 

  38. Gupta PK, Heuer A. Physics of the iso-structural viscosity. J Non Cryst Solids. 2012;358:3551–8.

    CAS  Article  Google Scholar 

  39. Angell C. Formation of glasses from liquids and biopolymers. Science. 1995;267:1924–35.

    CAS  Article  Google Scholar 

  40. Ketov SV, Sun YH, Nachum S, Lu Z, Checchi A, Beraldin AR, Bai HY, Wang WH, Louzguine-Luzgin DV, Carpenter MA, Greer AL. Rejuvenation of metallic glasses by non-affine thermal strain. Nature. 2015;524:200–3.

    CAS  Article  Google Scholar 

  41. Liu ST, Wang Z, Peng HL, Yu HB, Wang WH. The activation energy and volume of flow units of metallic glasses. Scr Mater. 2012;67:9–12.

    CAS  Article  Google Scholar 

  42. Yu HB, Wang WH, Bai HY, Wu Y, Chen MW. Relating activation of shear transformation zones to β relaxations in metallic glasses. Phys Rev B. 2010;81:220201.

    Article  Google Scholar 

  43. Yu HB, Shen X, Wang Z, Gu L, Wang WH, Bai HY. Tensile plasticity in metallic glasses with pronounced β relaxations. Phys Rev Lett. 2012;108:015504.

    CAS  Article  Google Scholar 

  44. Yu HB, Samwer K, Wu Y, Wang WH. Correlation between beta relaxation and self-diffusion of the smallest constituting atoms in metallic glasses. Phys Rev Lett. 2012;109:095508.

    CAS  Article  Google Scholar 

  45. Xi XK, Zhao DQ, Pan MX, Wang WH, Wu Y, Lewandowski JJ. Fracture of brittle metallic glasses: brittleness or plasticity. Phys Rev Lett. 2005;94:125510.

    CAS  Article  Google Scholar 

  46. Chen HS, Coleman E. Structure relaxation spectrum of metallic glasses. Appl Phys Lett. 1976;28:245–7.

    CAS  Article  Google Scholar 

  47. Sonal RP, Supriya K, Ashmi TP, Arun P. Non-isothermal crystallization kinetics of Zr52Cu18Ni14Al10Ti6 metallic glass. J Therm Anal Calorim. 2015;. doi:10.1007/s10973-015-4979-0.

    Google Scholar 

  48. Madinehei M. Improvement of corrosion and mechanical properties of amorphous steels by microalloying and nanocrystallization. Ph.D. Thesis. Universitat Politecnica de Catalunya; 2015.

  49. Liu C, Pineda E, Crespo D. Characterization of mechanical relaxation in a Cu–Zr–Al metallic glass. J Alloys Compd. 2014;643:s17–21.

    Article  Google Scholar 

  50. Nowick AS, Berry BS. Anelastic relaxation in crystalline solids. London: Academic press; 1972.

    Google Scholar 

  51. Hu L, Zhou C, Zhang C, Yue Y. Thermodynamic anomaly of the sub-T g relaxation in hyperquenched metallic glasses. J Chem Phys. 2013;138:174508.

    Article  Google Scholar 

  52. Liu YH, Fujita T, Aji DPB, Matsuura M, Chen MW. Structural origins of Johari–Goldstein relaxation in a metallic glass. Nat Commun. 2014;5:3238.

    CAS  Google Scholar 

  53. Qiao JC, Pelletier J, Casalini R. J Phys Chem B. 2013;117(13658–1366):6.

    Google Scholar 

  54. Qiao JC, Pelletier JM, Kou HC, Zhou X. Modification of atomic mobility in a Ti-based bulk metallic glass by plastic deformation or thermal annealing. Intermetallics. 2012;28:128–37.

    CAS  Article  Google Scholar 

  55. Yuan CC, Xiang JF, Xi XK, Wang WH. NMR signature of evolution of ductile-to-brittle transition in bulk metallic glasses. Phys Rev Lett. 2011;107:236403.

    CAS  Article  Google Scholar 

  56. Jiang WH, Atzmon M. Room-temperature flow in a metallic glass—Strain-rate dependence of shear-band behavior. J Alloys Compd. 2011;509:7395–9.

    CAS  Article  Google Scholar 

  57. Okumura H, Inoue A, Masumoto T. Glass transition and viscoelastic behaviors of La55Al25Ni20 and La55Al25Cu20 amorphous alloys. Mater Trans. 1991;32:593–8.

    CAS  Article  Google Scholar 

  58. Okumura H, Chen HS, Inoue A, Masumoto T. Sub-T g mechanical relaxation of a La55A125Ni20 amorphous alloy. J Non Cryst Solids. 1991;130:304–10.

    CAS  Article  Google Scholar 

  59. Hunt AG. Fragility of liquids using percolation-based transport theories—correlation between limiting slope of the viscosity and non-exponentiality of relaxation. J Non Cryst Solids. 2000;274:93–101.

    CAS  Article  Google Scholar 

  60. Ferrari L, Mott NF, Russo GA. Defect theory of the viscosity in glass-forming liquids. Philos Mag A. 1989;59:263–72.

    Article  Google Scholar 

  61. Berlev A, Bobrov O, Khonik V, Csach K, Juríková A, Miškuf J, Neuhäuser H, Yazvitsky M. Viscosity of bulk and ribbon Zr-based glasses well below and in the vicinity of Tg: a comparative study. Phys Rev B. 2003;68:132203.

    Article  Google Scholar 

  62. Csach K, Bobrov O, Khonik V, Lyakhov S, Kitagawa K. Relationship between the shear viscosity and heating rate of metallic glasses below Tg. Phys Rev B. 2006;73:092107.

    Article  Google Scholar 

  63. Na JH, Demetriou MD, Johnson WL. Fragility of iron-based glasses. Appl Phys Lett. 2011;99:161902.

    Article  Google Scholar 

  64. Tsyplakov AN, Mitrofanov YP, Makarov AS, Afonin GV, Khonik VA. Determination of the activation energy spectrum of structural relaxation in metallic glasses using calorimetric and shear modulus relaxation data. J Appl Phys. 2014;116:123507.

    Article  Google Scholar 

  65. Tsyplakov AN, Mitrofanov YP, Khonik VA, Kobelev NP, Kaloyan AA. Relationship between the heat flow and relaxation of the shear modulus in bulk PdCuP metallic glass. J Alloys Compd. 2015;618:449–54.

    CAS  Article  Google Scholar 

  66. Primak W. Kinetics of processes distributed in activation energy. Phys Rev. 1955;100:1677–89.

    CAS  Article  Google Scholar 

  67. Gibbs MRJ, Evetts JE, Leake JA. Activation energy spectra and relaxation in amorphous materials. J Mater Sci. 1983;18:278–88.

    CAS  Article  Google Scholar 

  68. Khonik SV, Granato AV, Joncich DM, Pompe A, Khonik VA. Evidence of distributed interstitialcy-like relaxation of the shear modulus due to structural relaxation of metallic glasses. Phys Rev Lett. 2008;100:065501.

    CAS  Article  Google Scholar 

  69. Khonik VA, Kitagawa K, Morii H. On the determination of the crystallization activation energy of metallic glasses. J Appl Phys. 2000;87:8440.

    CAS  Article  Google Scholar 

  70. Jiao W, Wen P, Peng HL, Bai HY, Sun BA, Wang WH. Evolution of structural and dynamic heterogeneities and activation energy distribution of deformation units in metallic glass. Appl Phys Lett. 2013;102:101903.

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by MINECO, Grant FIS2014-54734-P, and Generalitat de Catalunya, Grant 2014SGR00581. C. Liu is supported by Generalitat de Catalunya, FI Grant 2012FI_B00237.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoren Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Madinehei, M., Pineda, E. et al. Relaxation dynamics of Fe55Cr10Mo14C15B6 metallic glass explored by mechanical spectroscopy and calorimetry measurements. J Therm Anal Calorim 125, 711–719 (2016). https://doi.org/10.1007/s10973-016-5379-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5379-9

Keywords

  • Metallic glass
  • Viscosity
  • Mechanical relaxation
  • Anelastic
  • Physical aging
  • Structural relaxation