Skip to main content
Log in

Study of Brønsted acid site in H-MCM-22 zeolite by temperature-programmed desorption of ammonia

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Interaction of ammonia with H-MCM-22 zeolite (Si/Al = 24.5) was investigated by temperature-programmed desorption technique in order to obtain information on thermodynamics of the process. Average activation energy for desorption of ammonia from Brønsted acid sites of H-MCM-22 zeolite was estimated from the data obtained under conditions varying in heating rate and also flow rate of carrier gas. It resulted in value of E d = 127 kJ mol−1 for heat rate variation method, whereas flow rate variation led to E d value of 111 kJ mol−1. Obtained E d values are compared with those reported in the literature for other zeolitic materials and discussed in the broader context of zeolite acidity. Comparison of E d values estimated here for H-MCM-22 zeolite with corresponding data for other protonic zeolites shows that H-MCM-22 displays mediocre/lower activation energy for ammonia compared with other high-silica zeolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Martinez C, Corma A. Inorganic molecular sieves: preparation, modification and industrial application in catalytic processes. Coord Chem Rev. 2011;255(13–14):1558–80. doi:10.1016/j.ccr.2011.03.014.

    Article  CAS  Google Scholar 

  2. Corma A. State of the art and future challenges of zeolites as catalysts. J Catal. 2003;216(1–2):298–312. doi:10.1016/s0021-9517(02)00132-x.

    Article  CAS  Google Scholar 

  3. Corma A. Solid acid catalysts. Curr Opin Solid State Mater Sci. 1997;2(1):63–75. doi:10.1016/s1359-0286(97)80107-6.

    Article  CAS  Google Scholar 

  4. Corma A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem Rev. 1995;95(3):559–614. doi:10.1021/cr00035a006.

    Article  CAS  Google Scholar 

  5. Corma A, Martinez A. Zeolites and zeotypes as catalysts. Adv Mater. 1995;7(2):137–44. doi:10.1002/adma.19950070206.

    Article  CAS  Google Scholar 

  6. Vermeiren W, Gilson JP. Impact of zeolites on the petroleum and petrochemical industry. Top Catal. 2009;52(9):1131–61. doi:10.1007/s11244-009-9271-8.

    Article  CAS  Google Scholar 

  7. Tanabe K, Holderich WF. Industrial application of solid acid–base catalysts. Appl Catal A Gen. 1999;181(2):399–434. doi:10.1016/s0926-860x(98)00397-4.

    Article  CAS  Google Scholar 

  8. Busca G. Acid catalysts in industrial hydrocarbon chemistry. Chem Rev. 2007;107(11):5366–410. doi:10.1021/cr068042e.

    Article  CAS  Google Scholar 

  9. Keil FJ. Methanol-to-hydrocarbons: process technology. Microporous Mesoporous Mater. 1999;29(1–2):49–66. doi:10.1016/s1387-1811(98)00320-5.

    Article  CAS  Google Scholar 

  10. Corma A, MartinezTriguero J. The use of MCM-22 as a cracking zeolitic additive for FCC. J Catal. 1997;165(1):102–20. doi:10.1006/jcat.1997.1474.

    Article  CAS  Google Scholar 

  11. Wu P, Komatsu T, Yashima T. Selective formation of p-xylene with disproportionation of toluene over MCM-22 catalysts. Microporous Mesoporous Mater. 1998;22(1–3):343–56.

    Article  CAS  Google Scholar 

  12. Kumar N, Lindfors LE. Synthesis, characterization and application of H-MCM-22, Ga-MCM-22 and Zn-MCM-22 zeolite catalysts in the aromatization of n-butane. Appl Catal A Gen. 1996;147(1):175–87. doi:10.1016/s0926-860x(96)00195-0.

    Article  CAS  Google Scholar 

  13. Portilla MT, Llopis FJ, Martinez C, Valencia S, Corma A. Structure-reactivity relationship for aromatics transalkylation and isomerization process with TNU-9, MCM-22 and ZSM-5 zeolites, and their industrial implications. Appl Catal A Gen. 2011;393(1–2):257–68. doi:10.1016/j.apcata.2010.12.009.

    Article  CAS  Google Scholar 

  14. Laforge S, Martin D, Guisnet M. Xylene transformation over H-MCM-22 zeolites 3. Role of the three pore systems in o-, m- and p-xylene transformations. Appl Catal A Gen. 2004;268(1–2):33–41. doi:10.1016/j.apcata.2004.03.027.

    Article  CAS  Google Scholar 

  15. Laforge S, Martin D, Guisnet M. m-Xylene transformation over H-MCM-22 zeolite. 2. Method for determining the catalytic role of the three different pore systems. Microporous Mesoporous Mater. 2004;67(2–3):235–44. doi:10.1016/j.micromeso.2003.11.008.

    Article  CAS  Google Scholar 

  16. Laforge S, Martin D, Paillaud JL, Guisnet M. m-Xylene transformation over H-MCM-22 zeolite 1. Mechanisms and location of the reactions. J Catal. 2003;220(1):92–103. doi:10.1016/s0021-9517(03)00240-9.

    Article  CAS  Google Scholar 

  17. Liu DX, Bhan A, Tsapatsis M, Al Hashimi S. Catalytic behavior of Brønsted acid sites in MWW and MFI zeolites with dual meso- and microporosity. ACS Catal. 2011;1(1):7–17. doi:10.1021/cs100042r.

    Article  CAS  Google Scholar 

  18. Cejka J, Krejci A, Zilkova N, Kotrla J, Ernst S, Weber A. Activity and selectivity of zeolites MCM-22 and MCM-58 in the alkylation of toluene with propylene. Microporous Mesoporous Mater. 2002;53(1–3):121–33. doi:10.1016/s1387-1811(02)00332-3.

    Article  CAS  Google Scholar 

  19. Corma A, Corell C, Fornes V, Kolodziejski W, Perezpariente J. Infrared-spectroscopy, thermoprogrammed desorption, and nuclear-magnetic-resonance study of the acidity, structure, and stability of zeolite MCM-22. Zeolites. 1995;15(7):576–82. doi:10.1016/0144-2449(95)00015-x.

    Article  CAS  Google Scholar 

  20. He YJ, Nivarthy GS, Eder F, Seshan K, Lercher JA. Synthesis, characterization and catalytic activity of the pillared molecular sieve MCM-36. Microporous Mesoporous Mater. 1998;25(1–3):207–24. doi:10.1016/s1387-1811(98)00210-8.

    Article  CAS  Google Scholar 

  21. Delgado MR, Bulanek R, Chlubna P, Arean CO. Bronsted acidity of H-MCM-22 as probed by variable-temperature infrared spectroscopy of adsorbed CO and N-2. Catal Today. 2014;227:45–9. doi:10.1016/j.cattod.2013.09.013.

    Article  CAS  Google Scholar 

  22. Arean CO, Delgado MR, Nachtigall P, Thang HV, Rubes M, Bulanek R, et al. Measuring the Brønsted acid strength of zeolites—does it correlate with the O–H frequency shift probed by a weak base? Phys Chem Chem Phys. 2014;16(21):10129–41. doi:10.1039/c3cp54738h.

    Article  CAS  Google Scholar 

  23. Suzuki K, Sastre G, Katada N, Niwa M. Quantitative measurements of Brønsted acidity of zeolites by ammonia IRMS-TPD method and density functional calculation. Chem Lett. 2007;36(8):1034–5. doi:10.1246/cl.2007.1034.

    Article  CAS  Google Scholar 

  24. Niwa M, Katada N. New method for the temperature-programmed desorption (TPD) of ammonia experiment for characterization of zeolite acidity: a review. Chem Rec. 2013;13(5):432–55. doi:10.1002/tcr.201300009.

    Article  CAS  Google Scholar 

  25. Farneth WE, Gorte RJ. Methods for characterizing zeolite acidity. Chem Rev. 1995;95(3):615–35. doi:10.1021/cr00035a007.

    Article  CAS  Google Scholar 

  26. Hunger B, Datka J. Heterogeneity of OH groups in H-mordenites TPD and IR studies of ammonia desorption. J Therm Anal Calorim. 1998;53(1):217–25. doi:10.1023/a:1010144410870.

    Article  CAS  Google Scholar 

  27. Hidalgo CV, Itoh H, Hattori T, Niwa M, Murakami Y. Measurement of the acidity of various zeolites by temperature-programmed desorption of ammonia. J Catal. 1984;85(2):362–9. doi:10.1016/0021-9517(84)90225-2.

    Article  CAS  Google Scholar 

  28. Arena F, Dario R, Parmaliana A. A characterization study of the surface acidity of solid catalysts by temperature programmed methods. Appl Catal A Gen. 1998;170(1):127–37. doi:10.1016/s0926-860x(98)00041-6.

    Article  CAS  Google Scholar 

  29. Derouane EG, Vedrine JC, Ramos Pinto R, Borges PM, Costa L, Lemos MANDA, et al. The acidity of zeolites: concepts, measurements and relation to catalysis: a review on experimental and theoretical methods for the study of zeolite acidity. Catal Rev Sci Eng. 2013;55(4):454–515. doi:10.1080/01614940.2013.822266.

    Article  CAS  Google Scholar 

  30. Bulanek R, Kolarova M, Chlubna P, Cejka J. Coordination of extraframework Li+ cation in the MCM-22 and MCM-36 zeolite: FTIR study of CO adsorbed. Adsorpt J Int Adsorpt Soc. 2013;19(2–4):455–63. doi:10.1007/s10450-012-9467-2.

    Article  CAS  Google Scholar 

  31. Polozij M, Thang HV, Rubes M, Eliasova P, Cejka J, Nachtigall P. Theoretical investigation of layered zeolites with MWW topology: MCM-22P vs. MCM-56. Dalton Trans. 2014;43(27):10443–50. doi:10.1039/c4dt00414k.

    Article  CAS  Google Scholar 

  32. Leonowicz ME, Lawton JA, Lawton SL, Rubin MK. MCM-22—a molecular-sieve with 2 independent multidimensional channel systems. Science. 1994;264(5167):1910–3. doi:10.1126/science.264.5167.1910.

    Article  CAS  Google Scholar 

  33. Unverricht S, Hunger M, Ernst S, Karge HG, Weitkamp J. Zeolite MCM-22—synthesis, dealumination and structural characterization. In: Zeolites and related microporous materials: state of the art 1994, vol. 84. 1994. p. 37–44.

  34. Lonyi F, Valyon J. On the interpretation of the NH3-TPD patterns of H-ZSM-5 and H-mordenite. Microporous Mesoporous Mater. 2001;47(2–3):293–301. doi:10.1016/s1387-1811(01)00389-4.

    Article  CAS  Google Scholar 

  35. Matsunaga Y, Yamazaki H, Imai H, Yokoi T, Tatsumi T, Kondo JN. Hexamethyleneimine and pivalonitrile as location probe molecules of Lewis acid sites on MWW-type zeolites. Microporous Mesoporous Mater. 2015;206:86–94. doi:10.1016/j.micromeso.2014.12.014.

    Article  CAS  Google Scholar 

  36. Arean CO, Delgado MR, Bulanek R, Frolich K. Combined microcalorimetric and IR spectroscopic study on carbon dioxide adsorption in H-MCM-22. Appl Surf Sci. 2014;316:532–6. doi:10.1016/j.apsusc.2014.08.036.

    Article  CAS  Google Scholar 

  37. Cvetanovic RJ, Amenomiya Y. Application of a temperature programmed desorption technique to catalyst studies. Adv Catal. 1967;17:103–49.

    CAS  Google Scholar 

  38. Weber RW, Fletcher JCQ, Moller KP, Oconnor CT. The characterization and elimination of the external acidity of ZSM-5. Microporous Mater. 1996;7(1):15–25. doi:10.1016/0927-6513(96)00026-0.

    Article  CAS  Google Scholar 

  39. Kapustin GI, Brueva TR, Klyachko AL, Beran S, Wichterlova B. Determination of the number and acid strength of acid sites in zeolites by ammonia adsorption—comparison of calorimetry and temperature-programmed desorption of ammonia. Appl Catal. 1988;42(2):239–46. doi:10.1016/0166-9834(88)80005-8.

    Article  CAS  Google Scholar 

  40. Hunger B, Hoffmann J. Kinetic-analysis of NH3 temperature programmed desorption (TPD) on a HZSM-5 zeolite. Thermochim Acta. 1986;106:133–40. doi:10.1016/0040-6031(86)85124-3.

    Article  CAS  Google Scholar 

  41. Hunger B, Hoffmann J, Heitzsch O, Hunger M. Temperature-programmed desorption (TPD) of ammonia from HZSM-5 zeolites. J Therm Anal. 1990;36(4):1379–91. doi:10.1007/bf01914061.

    Article  CAS  Google Scholar 

  42. Rodriguez-Gonzalez L, Hermes F, Bertmer M, Rodriguez-Castellon E, Jimenez-Lopez A, Simon U. The acid properties of H-ZSM-5 as studied by NH3-TPD and Al-27-MAS-NMR spectroscopy. Appl Catal A Gen. 2007;328(2):174–82. doi:10.1016/j.apcata.2007.06.003.

    Article  CAS  Google Scholar 

  43. Rodriguez-Gonzalez L, Rodriguez-Castellon E, Jimenez-Lopez A, Simon U. Correlation of TPD and impedance measurements on the desorption of NH3 from zeolite H-ZSM-5. Solid State Ionics. 2008;179(35–36):1968–73. doi:10.1016/j.ssi.2008.06.007.

    Article  CAS  Google Scholar 

  44. Al-Dughaither AS, de H. Lasa. HZSM-5 zeolites with different SiO2/Al2O3 ratios. Characterization and NH3 desorption kinetics. Ind Eng Chem Res. 2014;53(40):15303–16. doi:10.1021/ie4039532.

    Article  CAS  Google Scholar 

  45. Sharma SB, Meyers BL, Chen DT, Miller J, Dumesic JA. Characterization of catalyst acidity by microcalorimetry and temperature-programmed desorption. Appl Catal A Gen. 1993;102(2):253–65. doi:10.1016/0926-860x(93)80232-f.

    Article  CAS  Google Scholar 

  46. Katada N, Igi H, Kim JH, Niwa M. Determination of the acidic properties of zeolite by theoretical analysis of temperature-programmed desorption of ammonia based on adsorption equilibrium. J Phys Chem B. 1997;101(31):5969–77. doi:10.1021/jp9639152.

    Article  CAS  Google Scholar 

  47. Niwa M, Katada N, Sawa M, Murakami Y. Temperature-programmed desorption of ammonia with readsorption based on the derived theoretical equation. J Phys Chem. 1995;99(21):8812–6. doi:10.1021/j100021a056.

    Article  CAS  Google Scholar 

  48. Katada N, Suzuki K, Noda T, Sastre G, Niwa M. Correlation between Brønsted acid strength and local structure in zeolites. J Phys Chem C. 2009;113(44):19208–17. doi:10.1021/jp903788n.

    Article  CAS  Google Scholar 

  49. Suzuki K, Noda T, Katada N, Niwa M. IRMS-TPD of ammonia: direct and individual measurement of Brønsted acidity in zeolites and its relationship with the catalytic cracking activity. J Catal. 2007;250(1):151–60. doi:10.1016/j.jcat.2007.05.024.

    Article  CAS  Google Scholar 

  50. Okumura K, Nishigaki K, Niwa M. Studies on the structure and acid properties of GaMCM-41 mesoporous molecular sieve. Chem Lett. 1998;7:577–8. doi:10.1246/cl.1998.577.

    Article  Google Scholar 

  51. Dragoi B, Rakic V, Dumitriu E, Auroux A. Adsorption of organic pollutants over microporous solids investigated by microcalorimetry techniques. J Therm Anal Calorim. 2010;99(3):733–40. doi:10.1007/s10973-009-0353-4.

    Article  CAS  Google Scholar 

  52. Dragoi B, Gervasini A, Dumitriu E, Auroux A. Calorimetric determination of the acidic character of amorphous and crystalline aluminosilicates. Thermochim Acta. 2004;420(1–2):127–34. doi:10.1016/j.tca.2003.10.031.

    Article  CAS  Google Scholar 

  53. Auroux A. Microcalorimetry methods to study the acidity and reactivity of zeolites, pillared clays and mesoporous materials. Top Catal. 2002;19(3–4):205–13. doi:10.1023/a:1015367708955.

    Article  CAS  Google Scholar 

  54. Fischer M, Delgado MR, Arean CO, Duran CO. CO adsorption complexes in zeolites: How does the inclusion of dispersion interactions affect predictions made from DFT calculations? The case of Na-CHA. Theoret Chem Acc. 2015;. doi:10.1007/s00214-015-1692-9.

    Google Scholar 

  55. Pulido A, Delgado MR, Bludsky O, Rubes M, Nachtigall P, Arean CO. Combined DFT/CC and IR spectroscopic studies on carbon dioxide adsorption on the zeolite H-FER. Energy Environ Sci. 2009;2(11):1187–95. doi:10.1039/b911253g.

    Article  CAS  Google Scholar 

  56. Jones AJ, Iglesia E. The strength of Brønsted acid sites in microporous aluminosilicates. ACS Catal. 2015;5(10):5741–55. doi:10.1021/acscatal.5b01133.

    Article  CAS  Google Scholar 

  57. Joly JP, Perrard A. Determination of the heat of adsorption of ammonia on zeolites from temperature-programmed desorption experiments. Langmuir. 2001;17(5):1538–42. doi:10.1021/la001129p.

    Article  CAS  Google Scholar 

  58. Suzuki K, Katada N, Niwa M. Detection and quantitative measurements of four kinds of OH in HY zeolite. J Phys Chem C. 2007;111(2):894–900. doi:10.1021/jp065054v.

    Article  CAS  Google Scholar 

  59. Auroux A, Bolis V, Wierzchowski P, Gravelle PC, Vedrine JC. Study of the acidity of ZSM-5 zeolite by micro-calorimetry and infrared spectroscopy. J Chem Soc Faraday Trans I. 1979;75:2544–55. doi:10.1039/f19797502544.

    Article  CAS  Google Scholar 

  60. Karge HG, Dondur V, Weitkamp J. Investigation of the distribution of acidity strength in zeolites by temperature-programmed desorption of probe molecules. 2. Dealuminated y-type zeolites. J Phys Chem. 1991;95(1):283–8. doi:10.1021/j100154a053.

    Article  CAS  Google Scholar 

  61. Miyamoto Y, Katada N, Niwa M. Acidity of beta zeolite with different Si/Al-2 ratio as measured by temperature programmed desorption of ammonia. Microporous Mesoporous Mater. 2000;40(1–3):271–81. doi:10.1016/s1387-1811(00)00264-x.

    Article  CAS  Google Scholar 

  62. Niwa M, Suzuki K, Katada N, Kanougi T, Atoguchi T. Ammonia IRMS-TPD study on the distribution of acid sites in mordenite. J Phys Chem B. 2005;109(40):18749–57. doi:10.1021/jp051304g.

    Article  CAS  Google Scholar 

  63. Parrillo DJ, Gorte RJ. Characterization of acidity in H-ZSM-5, H-ZSM-12, H-mordenite, and H–Y using microcalorimetry. J Phys Chem. 1993;97(34):8786–92. doi:10.1021/j100136a023.

    Article  CAS  Google Scholar 

  64. Lee C, Parrillo DJ, Gorte RJ, Farneth WE. Relationship between differential heats of adsorption and Bronsted acid strengths of acidic zeolites: H-ZSM-5 and H-Mordenite. J Am Chem Soc. 1996;118(13):3262–8. doi:10.1021/ja953452y.

    Article  CAS  Google Scholar 

  65. Arena F, Di Chio R, Trunfio G. An experimental assessment of the ammonia temperature programmed desorption method for probing the surface acidic properties of heterogeneous catalysts. Appl Catal A Gen. 2015;503:227–36. doi:10.1016/j.apcata.2015.05.035.

    Article  CAS  Google Scholar 

  66. Katada N, Suzuki K, Noda T, Park MB, Min HK, Hong SB, et al. Ammonia IRMS-TPD characterization of Brønsted acid sites in medium-pore zeolites with different framework topologies. Top Catal. 2010;53(7–10):664–71. doi:10.1007/s11244-010-9503-y.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Czech Science Foundation for the project of the Centre of Excellence (P106/12/G015) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Bulánek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaculík, J., Setnička, M. & Bulánek, R. Study of Brønsted acid site in H-MCM-22 zeolite by temperature-programmed desorption of ammonia. J Therm Anal Calorim 125, 1217–1224 (2016). https://doi.org/10.1007/s10973-016-5349-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5349-2

Keywords

Navigation