Skip to main content
Log in

Complexes of some transition metal ions with selected dichlorophenoxyacetic acid

Thermal, spectral and magnetic properties

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper presents the interpretations of data obtained from the investigations of 2,4-dichlorophenoxyacetates of selected lanthanide(III) ions. The compounds of 2,4-dichlorophenoxyacetic acid ion with La(III), Pr(III)–Lu(III) with the formula Ln(C8H5O3Cl2)3·nH2O, where Ln(III) = lanthanides, n = 2, 4 or 5 depending on Ln(III) ions, were synthesized and characterized by elemental analysis, FTIR spectroscopy, magnetic and thermogravimetric studies and also by X-ray powder diffraction (XRD) measurements. The compounds crystallize in monoclinic or triclinic systems. The carboxylate groups act as bidentate chelating agents. On heating in air up to 1173 K, the analysed compounds are decomposed in three steps: they are dehydrated to anhydrous salts which next are decomposed to the oxides of respective metals with intermediate formation of the oxychlorides. The enthalpy values of the dehydration process changed from 44.00 to 91.34 kJ mol−1. The magnetic moments of compounds were determined in the ranges of 76–303 K and for some of them at 4.2–303 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kobyłecka J, Skiba E. The effect of phenoxyacetic herbicides on the uptake of copper, zinc and manganese by Triticum aestivum L. Polish J Environ Stud. 2008;17:895–901.

    Google Scholar 

  2. Salem FB, Said OB, Aissa P, Mahmoudi E, Monperrus M, Grunberger O, Duran R. Pesticides in Ichkeul Lake–Bizerta Lagoon Watershed in Tunisia: use, occurrence, and effects on bacteria and free-living marine nematodes. Environ Sci Pollut Res. 2015;23(1):36–48.

  3. Tabani H, Khodaei K, Bide Y, Zara FD, Mirzaei S, Fakhari AR. Application of pH-sensitive magnetic nanoparticles microgel as a sorbent for the preconcentration of phenoxy acid herbicides in watersamples. J Chromatogr. 2015;A1407:21–9.

    Article  Google Scholar 

  4. He ZD, Qiao CF, Han QB, Cheng CL, Hu HX, Jiang RW, But PP, Show PC. Authentication and quantitative analysis on the chemical profile of Cassia Bark (Cortex Cinnamomi) by high-pressure liquid chromatography. J Agric Food Chem. 2005;53:2424–8.

    Article  CAS  Google Scholar 

  5. Wen D, Li C, Di H, Liao Y, Liu H. A universal HPLC Method for the determination of phenolic acids in compound herbal medicines. J Agric Food Chem. 2005;53:6624–9.

    Article  CAS  Google Scholar 

  6. Narasimhan B, Belsare D, Pharande D, Mourya V, Dhake A. Esters, amides and substituted derivatives of cinnamic acid: synthesis, antimicrobial activity and QSAR investigations. Eur J Med Chem. 2004;39:827–34.

    Article  CAS  Google Scholar 

  7. Rotches-Ribalta R, Boutin C, Blanco-Moreno JM, Carpenter D, Sans FX. Herbicide impact on the growth and reproduction of characteristic and rare arable weeds of winter cereal fields. Ecotoxicology. 2015;24:991–1003.

    Article  CAS  Google Scholar 

  8. Satola B, Wubbeler JH, Steinbuchel A. Metabolic characteristics of the species Variovorax paradoxus. Appl Microbiol Biotechnol. 2013;97:541–60.

    Article  CAS  Google Scholar 

  9. Sura S, Waiser MJ, Tumber V, Raina-Fulton R, Cessna AJ. Effects of a herbicide mixture on primary and bacterial productivity in four prairie wetlands with varying salinities: an enclosure approach. Sci Total Environ. 2015;512–513:526–39.

    Article  Google Scholar 

  10. Neik GN, Bakale RP, Pathan AH, Ligade SG, Desai SA, Gudasi KB. 2,4-Dichlorophenoxyacetic acid derived Schiff base and Its lanthanide(III) complexes: synthesis, characterization, spectroscopic studies, and plant growth activity. Hindawi Publ Corp J Chem. 2012;2013.

  11. Ferenc W, Cristóvão B, Sarzyński J. Magnetic, thermal and spectroscopic pro-perties of lanthanide(III) 2-(4-chlorophenoxy)acetates, Ln(C8H6ClO3)3·nH2O. J Serb Chem Soc. 2013;78:1335–49.

    Article  CAS  Google Scholar 

  12. Dendrinou-Samara C, Psomas G, Christophorou K, Tangoulis V, Raptopoulou CP, Terzis A, Kessissoglou DP. Structurally diverse copper(II) herbicide complexes: mono- and bi-nuclear neutral or cationic complexes. J Chem Soc Dalton Trans. 1996;18:3737–43.

    Article  Google Scholar 

  13. Dendrinou-Samara C, Psomas G, Philippakopoulos P, Tangoulis V, Raptopoulou CP, Samaras E, Kessissoglou DP. CuII-herbicide complexes: structure and bioactivity. Inorg Chim Acta. 1998;272:24–32.

    Article  Google Scholar 

  14. Ma D, Quin L, Zhao X, Guo H, Lin J. Synth Met. 1998;212:2282.

    Google Scholar 

  15. Genske A, Götzschel K. Z Chem. 1980;22:147.

    Article  Google Scholar 

  16. Sahai R, Chandhary AK. Ternary complexes of some phenoxyacetic acid herbicides and pyridines with metal ions of biological interest. Monatsh Chem. 1982;113:681–9.

    Article  CAS  Google Scholar 

  17. Sahai R, Kushwana SS. J Indian Chem Soc. 1984;61:205.

    CAS  Google Scholar 

  18. Purcell M, Neault JF, Malonga H, Arakawa H, Carpentier R, Tajmir-Riahi HA. On the anti-atherogenic effect of the antioxidant BHT in cholesterol-fed rabbits: inverse relation between serum triglycerides and atheromatous lesions. Biochim Biophys Acta. 2001;1548:129–38.

    Article  CAS  Google Scholar 

  19. Ptaszyński B, Zwolińska A. Lead(II) and cadmium(II) compounds with 2,4-dichlorophenoxyacetic acid (2,4D) and 2-(2,4-dichlorophenoxy)-propionic acid (2,4DP): synthesis and properties. J Therm Anal Calorim. 2004;75:301–15.

    Article  Google Scholar 

  20. Mak TCW, Hing YW, Kennard CHL, Smith G, O’Reilly EJ. Silver(I)–phenoxyalkanoates. The crystal and molecular structures of polymeric [(4-chloro-2-methylphenoxy)ethanoato-O, O′]silver(I), [(2,4-dichlorophenoxy)-ethanoato-O, O′]silver(I), and di-µ-[(2-chlorophenoxy)ethanoato-O, O′]-disilver(I)–silver(I) perchlorate (1/1). J Chem Soc Dalton Trans. 1988;9:2353–6.

    Article  Google Scholar 

  21. Kennard CHL, Smith G, O’Reilly EJ. Metal–phenoxyalkanoic acid interactions. Part 3. Crystal and molecular structures of tetra-μ-(2,4-dichlorophenoxyacetato)bis[aquacopper(II)] dihydrate and tetra-μ-(2,4,5-trichlorophenoxyacetato)bis[pyridinecopper(II)]. Inorg Chim Acta. 1981;49:53–61.

    Article  Google Scholar 

  22. Shulgin WF, Konnik OW, Timofew UG. Characteristics of behavior of solid-solutions of rare-earth gallium garnets containing scandium. Zh Neorg Khim. 1990;35:365.

    CAS  Google Scholar 

  23. Shulgin WF, Konnik OW. Ukr Khim Zh. 1989;55:1014.

    CAS  Google Scholar 

  24. Ristici J. Buletinul Stiinttfie si Tehnic al. IPT. 1974;19:29.

    Google Scholar 

  25. Sahai R, Kushwana SS. J Indian Chem Soc. 1981;58:913–5.

    CAS  Google Scholar 

  26. Chen W, Yuan J-W, Lei L, Zeng Q-F. Tetraaquabis[2-(2,4-dichlorophenoxy)acetato]nickel(II). Acta Cryst. 2009;SecE65:m1148.

    Google Scholar 

  27. Tan X-W. Crystal structure of tetraaqua-bis(2,4-dichloro-phenoxy-acetato-?O)nickel(II) dihydrate, Ni(H2O)4(C8H5Cl2O3)2·2H2O. Z Kristallogr. 2011;NCS226(4):455–56.

  28. Kobyłecka J, Kruszynski R, Beniak S, Czubacka E. The synthesis of zinc(II) and cadmium(II) 2,4-dichlorophenoxyacetates in water–methanol environment. Structure and properties of polymeric [Zn(2,4-D)2(MeOH)2]n and [Cd(2,4-D)2(H2O)2]n. J Chem Crystallogr. 2012;42:405–15.

    Article  Google Scholar 

  29. Ma D-Y, Qin L, Guo H-F, Peng X-Y. Construction of two lanthanide complexes involving in situ 3,5-dichlorosalicylate synthesis. J Inorg Organomet Polym. 2013;23:638–45.

    Article  CAS  Google Scholar 

  30. Zong S, Zhou Ch, Zhang X, Zhou H, Li H, Zhu X, Wang Y. A novel molecularly imprinted material based on magnetic halloysite nanotubes for rapid enrichment of 2,4-dichlorophenoxyacetic acid in water. J Hazard Mater. 2014;276:58–65.

    Article  Google Scholar 

  31. Sauza FL, Lanza MRV, Lianos J, Saez C, Rodrigo MA, Canizares P. A wind-powered BDD electrochemical oxidation process for the removal of herbicides. J Environ Manag. 2015;158:36–9.

    Article  Google Scholar 

  32. Zhon Y-H, Wang Z-Y. Four coordination polymers based on flexible carboxylic acid and bis(pyridyl) mixed ligands: synthesis, structures, fluorescent and magnetic properties. Transit Met Chem. 2015;40:89–98.

    Article  Google Scholar 

  33. Figgis BN, Nyholm RS. A convenient solid for calibration of the Gouy magnetic susceptibility apparatus. J Chem Soc. 1958;4:4190–4216.

  34. Deacon GB, Philips RJ. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord Chem Rev. 1980;33:227–50.

    Article  CAS  Google Scholar 

  35. Mehrotra RC, Bohra R. Metal carboxylates. London: Academic Press; 1983.

    Google Scholar 

  36. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. Toronto: Wiley; 1997.

    Google Scholar 

  37. Manhas BS, Trikha AK. Relationships between the direction of shifts in the carbon–oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. J Indian Chem Soc. 1982;59:315.

    CAS  Google Scholar 

  38. Cross A, Jones AR. An introduction to practical infrared spectroscopy. London: Butterworths; 1969.

    Book  Google Scholar 

  39. Glotzel D, Segall B, Anderson OK. Self-consistent electronic structure of Si, Ge and diamond by the LMTO-ASA method. Solid State Commun. 1980;36:403–6.

    Article  Google Scholar 

  40. Ferenc W, Cristóvão B, Sarzyński J, Głuchowska H. Physico-chemical properties of 3-methoxy-2-nitrobenzoates of some rare earth elements(III). J Rare Earths. 2012;30:262–8.

    Article  CAS  Google Scholar 

  41. Nikolaev AV, Logvinienko AV, Myachina LI. Thermal Analysis. New York: Academic Press; 1969.

    Google Scholar 

  42. Paulik F. Special trends in thermal analysis. Chichester: Wiley; 1995.

    Google Scholar 

  43. Singh B, Agarvala V, Mourya PL, Dey AK. J Indian Chem Soc. 1992;59:1130.

    Google Scholar 

  44. Tao L, Zhao GB. TG–FTIR characterization of pyrolysis of waste mixtures of paint and tar slag. J Hazard Mater. 2010;175:754–61.

    Article  CAS  Google Scholar 

  45. Varsanyi G. Assignments for vibrational spectra of 700 benzene derivatives. Budapest: Akademiai Kiadó; 1973.

    Google Scholar 

  46. O’Connor ChJ. Progress in inorganic chemistry. New York: Wiley; 1982.

    Google Scholar 

  47. Kahn O. Molecular magnetism. New York: VCH Publisher; 1993.

    Google Scholar 

  48. Cotton FA, Wilkinson G. Advanced inorganic chemistry. New York: John Wiley and Sons; 1988. p. 955–79.

    Google Scholar 

  49. Van Vleck JH. The theory of electronic and magnetic susceptibilities. Oxford: University Press; 1932.

    Google Scholar 

  50. Kettle SFA. Physical inorganic chemistry: a coordination chemistry approach. Oxford: Oxford University Press; 2000.

    Google Scholar 

  51. Earnshaw A. Introduction to magnetochemistry. London: Academic Press; 1968.

    Google Scholar 

  52. Sinha SP. Systematic and properties of the lanthanides. Dordrecht, The Netherlands: Reidel; 1983.

    Book  Google Scholar 

  53. Benelli C, Gatteschi DD. Magnetism of lanthanides in molecular materials with transition-metal ions and organic radicals. Chem Rev. 2002;102:2369–89.

    Article  CAS  Google Scholar 

  54. Meyer C, Ruck BJ, Preston ARH, Granville S, Williams VM, Trodhal HJ. Magnetic properties of ErN films. J Magn Mater. 2010;322:1973–8.

    Article  CAS  Google Scholar 

  55. Staab HA. Einführung in die theoretische organische Chemie. Weinheim: Springer; 1962.

    Google Scholar 

  56. Shorter J. Correlation analysis in organic chemistry. An introduction to linear free-energy relationship. Oxford: Clarendon Press; 1973.

    Google Scholar 

  57. Ferenc W, Bocian B. Influence of substituent positions on the spectral and thermal behaviours of 2-chloro-5-nitro- and 5-chloro-2-nitrobenzoates of light lanthanides. J Serb Chem Soc. 1999;64(4):235–43.

    CAS  Google Scholar 

  58. Hart H, Craine LE, Hart DJ, Hadad ChM. Organic chemistry a short course. 12th ed. Boston, New York: Houghton Mifflin Company; 2007.

    Google Scholar 

  59. McMurry J. Organic chemistry. 4th ed. Warsaw: PWN; 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wiesława Ferenc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferenc, W., Cristóvão, B., Sarzyński, J. et al. Complexes of some transition metal ions with selected dichlorophenoxyacetic acid. J Therm Anal Calorim 126, 129–139 (2016). https://doi.org/10.1007/s10973-016-5321-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5321-1

Keywords

Navigation