Approximation-based integral versus differential isoconversional approaches to the evaluation of kinetic parameters from thermogravimetry

kinetic analysis of the dehydration of a pharmaceutical hydrate

Abstract

The relative accuracies of approximation-based integral versus differential isoconversional approaches for ‘actual’ E determination were investigated on experimental dehydration data of roxithromycin monohydrate from thermogravimetric (TG) analysis. The dehydration kinetic parameters and the relationship to the structural characteristics of the monohydrate and anhydrate forms from differential scanning calorimetry (DSC) and single-crystal X-ray diffractometry (SC-XRD) are also reported. Integral methods versus the differential Friedman isoconversional method evaluated E correspondences in both iso- and non-isothermal TG methods. The reliability in E from Friedman approached that of estimates from current most accepted integral isoconversional methods and was even superior to methods (for non-isothermal studies) that employ an approximation to the temperature integral (modified Kissinger–Akahira–Sunose, Senum–Yang fourth degree). Structural characterization (DSC, SC-XRD) and kinetic analysis from generalized kinetic master plots concluded that coordinated water occupied interlinked voids in crystal structure which may have facilitated the multidimensional diffusional loss of water upon heating without disruption of the crystal structure.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Khawam A, Flanagan DR. Complementary use of model-free and modelistic methods in the analysis of solid-state kinetics. J Phys Chem B. 2005;109:10073–80.

    Article  CAS  Google Scholar 

  2. 2.

    Gao Z, Nakada M, Amasaki I. A consideration of errors and accuracy in the isoconversional methods. Thermochim Acta. 2001;369:137–42.

    Article  CAS  Google Scholar 

  3. 3.

    Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  4. 4.

    Šimon P. Isoconversional methods fundamentals, meaning and application. J Therm Anal Calorim. 2004;76:123–32.

    Article  Google Scholar 

  5. 5.

    Sbirrazzuoli N, Vincent L, Mija A, Guigo N. Integral, differential and advanced isoconversional methods complex mechanisms and isothermal predicted conversion-time curves. Chemom Intel Lab Syst. 2009;96:219–26.

    Article  CAS  Google Scholar 

  6. 6.

    Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178–83.

    Article  CAS  Google Scholar 

  7. 7.

    Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci C. 1964;6:183–95.

    Article  Google Scholar 

  8. 8.

    Criado JM, Sánchez-Jiménez PE, Pérez-Maqueda LA. Critical study of the isoconversional methods of kinetic analysis. J Therm Anal Calorim. 2008;92:199–203.

    Article  CAS  Google Scholar 

  9. 9.

    Mallet F, Petit S, Lafont S, Billot P, Lemarchand D, Coquerel G. Solvent exchanges among molecular compounds. Two extreme cases of pharmaceutical interest. J Therm Anal Calorim. 2003;73:459–71.

    Article  CAS  Google Scholar 

  10. 10.

    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  11. 11.

    Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol. 1971;16:22–31.

    Google Scholar 

  12. 12.

    Senum GI, Yang RT. Rational approximation of the integral of the Arrhenius function. J Therm Anal. 1977;11:445–7.

    Article  Google Scholar 

  13. 13.

    Flynn JH. The ‘temperature integral’—its use and abuse. Thermochim Acta. 1997;300:83–92.

    Article  CAS  Google Scholar 

  14. 14.

    Vyazovkin S, Dollimore D. Linear and nonlinear procedures in isoconversional computations of the activation energy of thermally induced reactions in solids. J Chem Inf Comput Sci. 1996;36:42–5.

    Article  CAS  Google Scholar 

  15. 15.

    APEX 2, SADABS and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA; 2010.

  16. 16.

    Sheldrick GM. A short history of SHELX. Acta Crystallogr. 2008;A64:112–22.

    Article  Google Scholar 

  17. 17.

    Hübschle CB, Sheldrick GM, Dittrich B. ShelXle: a Qt graphical user interface for SHELXL. J Appl Crystallogr. 2011;44:1281–4.

    Article  Google Scholar 

  18. 18.

    Bērziņš A, Actiņš A. Effect of experimental and sample factors on dehydration kinetics of mildronate dihydrate: mechanism of dehydration and determination of kinetic parameters. J Pharm Sci. 2014;103:1747–55.

    Article  Google Scholar 

  19. 19.

    Aucamp M, Liebenberg W, Strydom SJ, van Tonder EC, de Villiers MM. Physicochemical properties of amorphous roxithromycin prepared by quench cooling of the melt or desolvation of a chloroform solvate. AAPS PharmSciTech. 2012;13:467–76.

    Article  CAS  Google Scholar 

  20. 20.

    Sánchez-Jiménez PE, Perejón A, Pérez-Maqueda LA, Criado JM. New insights on the kinetic analysis of isothermal data: the independence of the activation energy from the assumed kinetic model. Energy Fuels. 2015;29:392–7.

    Article  Google Scholar 

  21. 21.

    Khawam A, Flanagan DR. Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B. 2006;110:17315–28.

    Article  CAS  Google Scholar 

  22. 22.

    Gotor FJ, Criado JM, Malek J, Koga N. Kinetic analysis of solid-state reactions: the universality of master plots for analysing isothermal and nonisothermal experiments. J Phys Chem A. 2000;104:10777–82.

    Article  CAS  Google Scholar 

  23. 23.

    Bachet B, Brassy C, Mornon JP. [O-(dioxa-2,5 hexyl) oxime]-9 de l’érythromycine A hydrate. Acta Crystallogr. 1988;C44:112–6.

    CAS  Google Scholar 

  24. 24.

    Holstein JJ, Luger P, Kalinowski R, Mebs S, Paulman C, Dittrich B. Validation of experimental charge densities: refinement of the macrolide antibiotic roxithromycin. Acta Crystallogr. 2010;B66:568–77.

    Article  Google Scholar 

  25. 25.

    Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van der Streek J, Wood PA. Mercury CSD2.0—new features for the visualization and investigation of crystal structures. J Appl Crystallogr. 2008;41:466–70.

    Article  CAS  Google Scholar 

  26. 26.

    Koga N, Criado JM. Kinetic analyses of solid-state reactions with a particle-size distribution. J Am Ceram Soc. 1998;81:2901–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Nelson Mandela Metropolitan University (NMMU) and National Research Foundation (NRF) for research funding.

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Grooff.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 173 kb)

Supplementary material 2 (PDF 173 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Neglur, R., Grooff, D., Hosten, E. et al. Approximation-based integral versus differential isoconversional approaches to the evaluation of kinetic parameters from thermogravimetry. J Therm Anal Calorim 123, 2599–2610 (2016). https://doi.org/10.1007/s10973-016-5244-x

Download citation

Keywords

  • Roxithromycin
  • Solid-state kinetics
  • Advanced isoconversional
  • Differential Friedman