Skip to main content

Synthesis, thermal and antimicrobial studies of some Schiff bases of chitosan

Abstract

The Schiff bases of chitosan are synthesized by the reaction of chitosan with different aromatic aldehydes. The structures of the biopolymeric Schiff bases are characterized by Fourier transform infrared spectroscopy, 1H-NMR spectroscopy and elemental analysis (C, H, N). The 1H NMR spectroscopy is used to determine degree of deacetylation of chitosan and degree of substitution of Schiff bases. The Schiff base polymers have greater degrees of substitution varying from 65 to 88.5 %. Thermogravimetry of Schiff base polymers shows that they have nearly the same decomposition temperature as the chitosan, indicating that Schiff bases are thermally stable. The antimicrobial activities of chitosan and its Schiff bases are tested against Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Aspergillus niger and found that the antimicrobial activities of the Schiff bases of chitosan were stronger than those of chitosan.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Kurita K. Chemistry and application of chitin and chitosan. Polym Degrad Stab. 1998;59:117–20.

    CAS  Article  Google Scholar 

  2. 2.

    Prashanth KVH, Tharanathan RN. Chitin/chitosan: modifications and their unlimited application potential an overview. Trends Food Sci Technol. 2007;18:117–31.

    CAS  Article  Google Scholar 

  3. 3.

    Honarkar H, Barikani M. Applications of biopolymers I: chitosan. Monatsh Chem. 2009;140:1403–20.

    CAS  Article  Google Scholar 

  4. 4.

    Ravi Kumar MNV. A review of chitin and chitosan applications. React Funct Polym. 2000;46:1–27.

    Article  Google Scholar 

  5. 5.

    Rinaudo M, Pavlov G, Desbrieres P. Influence of acetic acid concentration on the solubilization of chitosan. Polymer. 1999;40:7029–32.

    CAS  Article  Google Scholar 

  6. 6.

    Yin X, Chen J, Yuan W, Lin Q, Ji L, Liu F. Preparation and antibacterial activity of Schiff bases from O-carboxymethyl chitosan and para-substituted benzaldehydes. Polym Bull. 2012;68:1215–26.

    CAS  Article  Google Scholar 

  7. 7.

    Tirkistani FAA. Thermal analysis of some chitosan Schiff bases. Polym Degrad Stab. 1998;60:67–70.

    CAS  Article  Google Scholar 

  8. 8.

    Dos Santos JE, Dockal ER, Cavalheiro ETG. Synthesis and characterization of Schiff bases from chitosan. Carbohydr Polym. 2005;60:277–82.

    Article  Google Scholar 

  9. 9.

    Pereira FS, Agostini DLS, Job AE, GonzálezJiao ERP. Thermal studies of chitin–chitosan derivatives. J Therm Anal Calorim. 2013;114:321–7.

    CAS  Article  Google Scholar 

  10. 10.

    Cimerman Z, Galic N, Bosner B. The Schiff bases of salicylaldehyde and aminopyridines as highly sensitive analytical reagents. Anal Chim Acta. 1997;343:145–53.

    CAS  Article  Google Scholar 

  11. 11.

    Dos Santos JE, Dockal ER, Cavalheiro ETG. Thermal behavior of Schiff base from chitosan. J Therm Anal Calorim. 2005;79:243–8.

    Article  Google Scholar 

  12. 12.

    Kurita K, Mori S, Nishiyama Y, Harata M. N-alkylation of chitin and some characteristics of the novel derivatives. Polym Bull. 2002;48:159–66.

    CAS  Article  Google Scholar 

  13. 13.

    Arora S, Lal S, Kumar S, Kumar M, Kumar M. Comparative degradation kinetic studies of three biopolymers: chitin, chitosan and cellulose. Arch Appl Sci Res. 2011;3(3):188–201.

    CAS  Google Scholar 

  14. 14.

    Aneja KR, Sharma C, Joshi R. Fungal infection of ear: a common problem in north eastern part of Haryana. Inter J Otorhinolaryngol. 2010;74:604–7.

    CAS  Article  Google Scholar 

  15. 15.

    Ahmad I, Beg AJ. Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multidrug resistant human pathogens. J Ethnopharmacol. 2001;74:113–23.

    CAS  Article  Google Scholar 

  16. 16.

    Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother. 2001;48:5–16.

    CAS  Article  Google Scholar 

  17. 17.

    Al-Burtamani SKS, Fatope MO, Marwah RG, Onifade AK, Al-Saidi SH. Chemical composition, antibacterial and antifungal activities of the essential oil of Haplophyllum tuberculatum from Oman. J Ethnopharmocol. 2005;96:107–12.

    CAS  Article  Google Scholar 

  18. 18.

    Jin X, Wang J, Bai J. Synthesis and antimicrobial activity of the Schiff base from chitosan and citral. Carbohyd Res. 2009;344:825–9.

    CAS  Article  Google Scholar 

  19. 19.

    Colthup NB, Daly LH, Wiberley SE. Introduction to infrared and Raman spectroscopy. 3rd ed. San Diego: Academic Press; 1990.

    Google Scholar 

  20. 20.

    Silverstein RM, Bassler GC, Morrill TC. Spectrometric identification of organic compounds. 5th ed. New York: Wiley; 1991.

    Google Scholar 

  21. 21.

    Pawlak A, Mucha M. Thermogravimetric and FTIR studies of chitosan blends. Thermochim Acta. 2003;396:153–66.

    CAS  Article  Google Scholar 

  22. 22.

    Tsai GJ, Su WH. Antibacterial activity of shrimp chitosan against Escherichia coli. J Food Prot. 1999;62:239–43.

    CAS  Google Scholar 

  23. 23.

    Hwang JK, Kim HJ, Yoon SJ, Pyun YR. Bactericidal activity of chitosan on E. coli. In: Chen RH, Chen HC, editors. Advances in chitin science, vol. III. Taiwan: Rita Advertising; 1998. p. 340–4.

    Google Scholar 

Download references

Acknowledgements

One of the authors, Sohan Lal, is extremely thankful to the Council of Scientific and Industrial Research and University Grant Commission, New Delhi, India, for providing the research grant.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sohan Lal.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lal, S., Arora, S. & Sharma, C. Synthesis, thermal and antimicrobial studies of some Schiff bases of chitosan. J Therm Anal Calorim 124, 909–916 (2016). https://doi.org/10.1007/s10973-015-5227-3

Download citation

Keywords

  • Chitosan
  • Schiff bases
  • TG
  • Antimicrobial activity
  • FTIR
  • 1H NMR