Skip to main content

Nanocrystalline anatase derived from modified alkoxide mesostructured gel

Abstract

A sol prepared by chelation of titanium n-butoxide with ethyl acetoacetate (1:1) was slowly hydrolyzed, and the obtained gel was thermally treated in order to produce anatase. Samples were investigated by means of FTIR, XRD, DTA/TG, N2 adsorption–desorption isotherms, FESEM and HRTEM. It was determined the modified alkoxide is partially hydrolyzed, leaving small amount of butoxide and ethyl acetoacetate groups attached to titanium. XRD pattern and HRTEM micrograph revealed gel ordering at the mesostructure scale. Observed mesostructure was found to be consisted with inorganic–organic nanoclusters, exhibiting some polydispersity in the size and variations in composition. Thermal decomposition exhibits evaporation of water and butanol, elimination of ethyl acetoacetate and butoxy groups, carbonate removal, anatase crystallization and transformation to rutile, accompanied with oxidation of carbonaceous species. After 2 h at 350 °C pure nanocrystalline anatase crystallites were obtained having average crystallite size of 16.4 nm with majority of exposed {101} facets.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Chen X, Mao SS. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev. 2007;107:2891–959.

    CAS  Article  Google Scholar 

  2. Liu Y, Liu CY, Zhang ZY. Effects of carboxylic acids on the microstructure and performance of titania nanocrystals. Chem Eng J. 2008;138:596–601.

    CAS  Article  Google Scholar 

  3. Porkodi K, Arokiamary SD. Synthesis and spectroscopic characterization of nanostructured anatase titania: a photocatalyst. Mater Charact. 2007;58:495–503.

    CAS  Article  Google Scholar 

  4. Lu C-W, Cao Y, Li H, Webb C, Pan W-P. Synthesis of TiO2 based on hydrothermal methods using elevated pressures and microwave conditions. J Therm Anal Calorim. 2014;116:1241–8.

    CAS  Article  Google Scholar 

  5. Nolan NT. Sol–gel synthesis and characterisation of novel metal oxide nanomaterials for photocatalytic applications. PhD Dissertation. Dublin Institute of Technology; 2010.

  6. You JH, Hsu KY. Influence of chelating agent and reaction time on the swelling process for preparation of porous TiO2 particles. J Eur Ceram Soc. 2010;30:1307–15.

    CAS  Article  Google Scholar 

  7. Birnie DP III, Bendzko NJ. 1H and 13C NMR observation of the reaction of acetic acid with titanium isopropoxide. Mater Chem Phys. 1999;59:26–35.

    CAS  Article  Google Scholar 

  8. Errington RJ, Ridland J, Clegg W, Coxall RA, Sherwood JM. β-diketonate derivatives of titanium alkoxides: X-ray crystal structures and solution dynamics of the binuclear complexes [{Ti(OR)3(dik)}2]. Polyhedron. 1998;17:659–74.

    CAS  Article  Google Scholar 

  9. Jung MW, Oh HJ, Yang JC, Shul YG. Structural investigation of the hydrolysis-condensation process of modified titanium isopropoxide. Bull Korean Chem Soc. 1999;20:1394–8.

    CAS  Google Scholar 

  10. Kayan A, Hoebbel D, Schmidt H. Complexation of titanium alkoxides with pentenoic acid and allylacetoacetate and their hydrolysis and addition reactions with H-silanes. J Appl Poly Sci. 2005;95:790–6.

    CAS  Article  Google Scholar 

  11. Kurajica S, Mali G, Gazivoda T, Sipusic J, Mandic V. A spectroscopic study of calcium aluminate gels obtained from aluminium sec-butoxide chelated with ethyl acetoacetate in various ratios. J Sol-Gel Sci Technol. 2009;50:58–68.

    CAS  Article  Google Scholar 

  12. Kurajica S, Škorić I, Lozić I, Mandić V. Ethyl acetoacetate ligand distribution in the course of titanium n-butoxide chelation. Mater Chem Phys. 2014;147:1058–67.

    CAS  Article  Google Scholar 

  13. Brunauer S, Emmett PH, Teller E. Adsorption of gasses in multimolecular layers. J Am Chem Soc. 1938;60:309–19.

    CAS  Article  Google Scholar 

  14. Barrett EP, Joyner LG, Halenda PP. The determination of pore volume and area distributions in porous substances. I. Computations form nitrogen isotherms. J Am Chem Soc. 1951;73:373–80.

    CAS  Article  Google Scholar 

  15. Chen W, Qiu Y, Yan K, Yang S. Surfactant directed self-assembly of size-tunable mesoporous titanium dioxide microspheres and their application in quasi-solid state dye-sensitized solar cells. J Power Sources. 2011;196:10806–16.

    CAS  Article  Google Scholar 

  16. Chandra D, Bhaumik A. Photoluminescence behavior of new mesoporous titanium-composites synthesized by using bidentate structure directing agents. Micropor Mesopor Mater. 2007;101:348–54.

    CAS  Article  Google Scholar 

  17. Chandra D, Bhaumik A. Super-macroporous TiO2 synthesized by using new designed chelating structure directing agents. Micropor Mesopor Mater. 2008;112:533–41.

    CAS  Article  Google Scholar 

  18. Saadoun L, Ayllon JA, Jimenez-Becerril J, Peral J, Domenech X, Rodriguez-Clemente R. Synthesis and photocatalytic activity of mesoporous anatase prepared from tetrabutylammonium–titania composites. Mater Res Bull. 2000;35:193–202.

    CAS  Article  Google Scholar 

  19. Sarkar K, Laha SC, Mala NK, Bhaumik A. A porous open-framework titanium oxophenylphosphate. J Solid State Chem. 2008;181:2065–72.

    CAS  Article  Google Scholar 

  20. Dag O, Soten I, Celik O, Polarz S, Coombs N, Ozin GA. Solventless acid-free synthesis of mesostructured titania: nanovessels for metal complexes and metal nanoclusters. Adv Funct Mater. 2003;13:30–6.

    CAS  Article  Google Scholar 

  21. Wang YD, Ma CL, Sun XD, Li HD. Synthesis and characterization of amorphous TiO2 with wormhole-like framework mesostructured. J Non-Cryst Solids. 2003;319:109–16.

    CAS  Article  Google Scholar 

  22. Rozes L, Steunou N, Fornasieri G, Sanchez C. Titanium-oxo clusters, versatile nanobuilding blocks for the design of advanced hybrid materials. Monatsh Chem. 2006;137:501–28.

    CAS  Article  Google Scholar 

  23. Kim YT, Park YS, Myung H, Chae HK. A chelate-assisted route to anatase TiO2 nanoparticles in acidic aqueous media. Colloids Surf A. 2008;313–314:260–3.

    Article  Google Scholar 

  24. Azouani R, Soloviev A, Benmami M, Chhor K, Bocquet JF, Kanaev A. Stability and growth of titanium-oxo-alkoxy TixOy(OiPr)z clusters. J Phys Chem C. 2007;111:16243–8.

    CAS  Article  Google Scholar 

  25. Chen HJ, Wang L, Chiu WY. Chelation and solvent effect on the preparation of titania colloids. Mater Chem Phys. 2007;101:12–9.

    CAS  Article  Google Scholar 

  26. Chang TC, Wang YT, Hong YS, Chiu YS. Effects of inorganic components on the structure and thermo-oxidative degradation of PMMA modified metal alkoxide-EAA complex. Thermochim Acta. 2002;390:93–102.

    CAS  Article  Google Scholar 

  27. Hoebbel D, Reinert T, Schmidt H. NMR and IR spectroscopic examination of the hydrolytic stability of organic ligands in metal alkoxide complexes and of oxygen bridged heterometal bonds. Mater Res Soc Symp Proc. 1996;435:461–7.

    CAS  Article  Google Scholar 

  28. Bahloul W, Bounor-Legare V, Seytre G, Cassagnau P. Influence of a non-polar medium (alkane and molten polypropylene) on the titanium n-butoxide hydrolysis-condensation reactions. J Sol-Gel Sci Technol. 2011;57:86–94.

    CAS  Article  Google Scholar 

  29. García-Benjume ML, Espitia-Cabrera MI, Contreras-García ME. The effect of synthesis parameters on the production of titania nanostructured spherical aggregates. J Ceram Proc Res. 2010;11:198–203.

    Google Scholar 

  30. Velasco MJ, Rubio F, Rubio J, Oteo JL. DSC and FT-IR analysis of the drying process of titanium alkoxide derived precipitates. Thermochim Acta. 1999;326:91–7.

    Article  Google Scholar 

  31. Silverstein RM, Webster FX. Spectrometric identification of organic compounds. 6th ed. New York: Willey; 1998.

    Google Scholar 

  32. Jung M. Synthesis and structural analysis of Au-doped TiO2/SiO2 mixed oxide films prepared by sol–gel process. J Sol-Gel Sci Technol. 2000;19:563–8.

    CAS  Article  Google Scholar 

  33. KrishnaChandar N, Jayavel R. Synthesis and photoluminescence properties of HMT passivated Dy2O3 nanoparticles. Phys E. 2012;44:1315–9.

    CAS  Article  Google Scholar 

  34. Takanabe K, Aika K, Seshan K, Lefferts L. Sustainable hydrogen from bio-oil—steam reforming of acetic acid as a model oxygenate. J Catal. 2004;227:101–8.

    CAS  Article  Google Scholar 

  35. Ferretti CA, Soldano A, Apesteguia CR, Di Cosimo JI. Monoglyceride synthesis by glycerolysis of methyl oleate on solid acid–base catalysts. Chem Eng J. 2010;161:346–54.

    CAS  Article  Google Scholar 

  36. Krunks M, Oja I, Tõnsuaadu K, Es-Souni M, Gruselle M, Niinistö L. Thermoanalytical study of acetylacetonate-modifyed titanium (IV) isopropoxide as precursor for TiO2 films. J Therm Anal Calorim. 2005;80:483–8.

    CAS  Article  Google Scholar 

  37. Wang M, Wen Y, Sawada Y, Hoshi Y, Hou Z. Effect of oxygen and WO3 additive on anatase-to-rutile phase transformation in TiO2 nanoparticles. J Therm Anal Calorim. 2015;119:435–9.

    CAS  Article  Google Scholar 

  38. Cernea M, Valsangiacom C, Trusca R, Vasiliu F. Synthesis of iron-doped anatase TiO2 powders by a particulate sol-gel route. J Optoelectron Adv Mater. 2007;9:2648–52.

    CAS  Google Scholar 

  39. Madarasz J, Braileanu A, Crisan M, Pokol G. Comprehensive evolved gas analysis (EGA) of amorphous precursors for S-doped titania by in situ TG–FTIR and TG/DTA–MS in air: part 2. Precursor from thiourea and titanium(IV)-n-butoxide. J Anal Appl Pyrolysis. 2009;85:549–56.

    CAS  Article  Google Scholar 

  40. Ying L, Hon LS, White T, Withers R, Hai LB. Controlled nanophase development in photocatalytic titania. Mater Trans. 2003;44:1328–32.

    CAS  Article  Google Scholar 

  41. Zhao X, Jin W, Cai J, Ye J, Li Z, Ma Y, Xie J, Qi L. Shape- and size-controlled synthesis of uniform anatase TiO2 nanocuboids enclosed by active 100 and 001 facets. Adv Funct Mater. 2011;21:3554–63.

    CAS  Article  Google Scholar 

  42. Jitputti J, Pavasupree S, Suzuki Y, Yoshikawa S. Synthesis and photocatalytic activity for water-splitting reaction of nanocrystalline mesoporous titania prepared by hydrothermal method. J Solid State Chem. 2007;180:1743–9.

    CAS  Article  Google Scholar 

  43. Huang D, Luo G, Yang L, Wang Y. Synthesis of mesoporous TiO2 materials with high specific area using inorganic acids as catalysts. Chin Particuol. 2005;3:176–80.

    CAS  Article  Google Scholar 

  44. Bajunajdad A, Zaki MI, Eastoe J, Pasupulety L. Characterization of nano-cerias synthesized in microemulsions by N2 sorptiometry and electron microscopy. J Colloid Interface Sci. 2006;302:501–8.

    Article  Google Scholar 

  45. Kartini I, Lu GQ. Study of the formation of mesoporous TiO2 using isopropoxide precursors under less water conditions. Indo J Chem. 2005;5:15–22.

    Google Scholar 

Download references

Acknowledgements

The support of University of Zagreb is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kurajica.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kurajica, S., Minga, I., Mandić, V. et al. Nanocrystalline anatase derived from modified alkoxide mesostructured gel. J Therm Anal Calorim 124, 645–655 (2016). https://doi.org/10.1007/s10973-015-5188-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5188-6

Keywords

  • Anatase
  • Chelating agent
  • Hybrid nanoclusters
  • Mesoporous gel
  • Nanocrystals