Journal of Thermal Analysis and Calorimetry

, Volume 124, Issue 2, pp 585–592 | Cite as

Crystallization and sintering behaviors of the polyphosphate glass doped with Zn and Mn

  • Jelena D. NikolićEmail author
  • Vladimir D. Živanović
  • Srdjan D. Matijašević
  • Jovica N. Stojanović
  • Snežana R. Grujić
  • Sonja V. Smiljanić
  • Vladimir S. Topalović


The crystallization and sintering behaviors of polyphosphate glass doped with trace elements Zn and Mn were examined. The heating experiments on bulk and powder glass samples were performed. The parent glass revealed low crystallization ability and the glass crystallization carried out under simultaneous acting of the surface and volume mechanisms. The bulk glass sample isothermally heated at T c = 500 °C commences to crystallize after 12 h, and KPO3 and Ca2KP3O10 crystalline phases appeared. The dendritic morphology of the crystals growing on sample surface was determined. The DTA and HSM results showed that the sintering and crystallization processes are independent. Phosphate glass-ceramics containing KPO3, K2Mg(PO3)4, Ca(PO3)2 and KCa(PO3)3 crystalline phases has been prepared by sintering of the glass powder compacts at T c = 500 °C for t = 12 h. A plate-like morphology of crystals which grow on glass grains surface was observed. The activation energies of crystal growth, E a,k = (246.6 ± 19.74) kJ mol−1 (Kissinger) and E a,oz = (258.80 ± 19.70) kJ mol−1 (Ozawa), were calculated.


Polyphosphate glass Crystallization Sintering Glass-ceramics DTA 



The authors are grateful to the Ministry of Education, Science and Technological Development of the Republic of Serbia for financial support (Projects 34001 and 172004).


  1. 1.
    Antonio JS, Olga PC, Rui LR. Bone tissue engineering: state of the art and future trends. Macromol Biosci. 2004;4:743–65.CrossRefGoogle Scholar
  2. 2.
    Delia SB, Natalia K, Robert VL, Robert GH. Effect of TiO2 addition on structure, solubility and crystallisation of phosphate invert glasses for biomedical applications. J Non-Cryst Solids. 2010;356:2626–33.CrossRefGoogle Scholar
  3. 3.
    Dias AG, Lopes MA, Gibson IR, Santos JD. In vitro degradation studies of calcium phosphate glass ceramics prepared by controlled crystallization. J Non-Cryst Solids. 2003;330:81–9.CrossRefGoogle Scholar
  4. 4.
    Ahmed I, Lewis M, Olsen I, Knowles JC. Phosphate glasses for tissue engineering: part 1. Processing and characterisation of a ternary based P2O5–CaO–Na2O glass system. Biomaterials. 2004;25(3):491–9.CrossRefGoogle Scholar
  5. 5.
    Ensanya A, Abou N, David MP, Sabeel PV, Robert JN, Jonathan CK. Bioactive functional materials: a perspective on phosphate-based glasses. J Mater Chem. 2009;19:690–701.CrossRefGoogle Scholar
  6. 6.
    Richard KB. Review: the structure of simple phosphate glasses. J Non-Cryst Solids. 2000;263&264:1–28.Google Scholar
  7. 7.
    Walter G, Vogel J, Hoppe U, Hartmann P. The structure of CaO–Na2O–MgO–P2O5 invert glass. J Non-Cryst Solids. 2001;296:212–23.CrossRefGoogle Scholar
  8. 8.
    Mandlule A, Döhler F, Van Wüllen L, Kasuga T, Brauer DS. Changes in structure and thermal properties with phosphate content of ternary calcium sodium phosphate glasses. J Non-Cryst Solids. 2007;353:263–70.CrossRefGoogle Scholar
  9. 9.
    Mourino V, Cattalini JP, Boccaccini AR. Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J R Soc Interface. 2012;9:401–19.CrossRefGoogle Scholar
  10. 10.
    Ito A, Kawamura H, Otsuka M, et al. Zinc-releasing calcium phosphate for stimulating bone formation. Mater Sci Eng C. 2002;22:21–5.CrossRefGoogle Scholar
  11. 11.
    Ni G, Chiu K, Lu W, et al. Strontium-containing hydroxyapatite bioactive bone cement in revision hip arthroplasty. Biomaterials. 2006;27:4348–55.CrossRefGoogle Scholar
  12. 12.
    Wu C, Zhou Y, Xu M, et al. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials. 2013;34:422–33.CrossRefGoogle Scholar
  13. 13.
    Wers E, Oudadesse H. Thermal behaviour and excess entropy of bioactive glasses and Zn-doped glasses. J Therm Anal Calorim. 2014;115:2137–44.CrossRefGoogle Scholar
  14. 14.
    Luthen F, Bulnheim U, Muller PD, et al. Influence of manganese ions on cellular behavior of human osteoblasts in vitro. Biomol Eng. 2007;24:531–6.CrossRefGoogle Scholar
  15. 15.
    Kasuga T, Sawada M, Nogami M, Abe Y. Bioactive ceramics prepared by sintering and crystallization of calcium phosphate invert glasses. Biomaterials. 1999;20:1415–20.CrossRefGoogle Scholar
  16. 16.
    Kasuga T, Abe Y. Novel calcium phosphate ceramics prepared by powder sintering and crystallization of glasses in the pyrophosphate region. J Mater Res. 1998;13:3357–60.CrossRefGoogle Scholar
  17. 17.
    Clark T, Reed JS. Kinetic processes involved in the sintering and crystallization of glass powders. J Am Ceram Soc. 1986;69(11):837–46.CrossRefGoogle Scholar
  18. 18.
    Siligardi C, D’Arrigo MC, Leonelli C. Sintering behaviour of glass-ceramic frits. Am Ceram Soc Bull. 2000;79(9):88–92.Google Scholar
  19. 19.
    Sonja VS, Snežana RG, Mihajlo BT, Vladimir DŽ, Jovica NS, Srdjan DM, Jelena DN. Crystallization and sinterability of glass-ceramics in the system La2O3–SrO–B2O3. Ceram Int. 2014;40(1):297–305.CrossRefGoogle Scholar
  20. 20.
    Lara C, Pascual MJ, Duran A. Glass-forming ability, sinterability and thermal properties in the systems RO–BaO–SiO2 (R = Mg, Zn). J Non-Cryst Solids. 2004;348:149–55.CrossRefGoogle Scholar
  21. 21.
    Vitale-Brovarone C, Miola M, Balagna C, Verné E. 3D-glass-ceramic scaffolds with antibacterial properties for bone grafting. Chem Eng J. 2008;137:129–36.CrossRefGoogle Scholar
  22. 22.
    Brovarone CV, Verne E, Appendino P. Macroporous bioactive glass-ceramic scaffolds for tissue engineering. J Mater Sci Mater Med. 2006;17:1069–78.CrossRefGoogle Scholar
  23. 23.
    Boccaccini AR, Chen Q, Lefebvre L, Gremillard L, Chevalier J. Sintering, crystallization and biodegradation behaviour of bioglass-derived glass-ceramics. Faraday Discuss. 2007;136:27–44.CrossRefGoogle Scholar
  24. 24.
    Chatzistavrou X, Zorba T, Chrissafis K, Kaimakamis G, Kontonasaki E, Koidis P, Paraskevopoulos KM. Influence of particle size on the crystallization process and the bioactive behaviour of a bioactive glass system. J Therm Anal Calorim. 2006;85:253–9.CrossRefGoogle Scholar
  25. 25.
    Dias AG, Tsuru K, Hayakawa T, Lopes MA, Santos JD, Osaka A. Crystallisation studies of biodegradable CaO–P2O5 glass with MgO and TiO2 for bone regeneration applications. Glass Technol. 2004;45(2):78–9.Google Scholar
  26. 26.
    Davim EJC, Senos AMR, Fernandes MHV. Non-isothermal crystallization kinetics of a Si–Ca–P–Mg bioactive glass. J Therm Anal Calorim. 2014;117:643–51.CrossRefGoogle Scholar
  27. 27.
    Hussin R, Abu Bakar NH, Nadhirah MN, Karim D, Shamsuri NW, Fazliana DN, Halim A, Husin MS, Hamdan S, Ahmad NE, Hashim IH, Bakar I. Short range structure of sodium calcium phosphate glass by Infrared and Raman spectroscopy. Solid State Sci Technol. 2011;19(2):128–36.Google Scholar
  28. 28.
    Nyquist RA. Handbook of infrared and Raman spectra of inorganic compounds and organics salts. London: Academic Press; 1997.Google Scholar
  29. 29.
    Moustafa YM, El-Egili K. Infrared spectra of sodium phosphate glasses. J Non-Cryst Solids. 1998;240:144–53.CrossRefGoogle Scholar
  30. 30.
    Fatma H, El-Batal. UV–visible, infrared, Raman and ESR spectra of gamma-irradiated TiO2-doped soda lime phosphate glasses. Indian J Pure Appl Phys. 2009;47:631–42.Google Scholar
  31. 31.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1959;29:1702–6.CrossRefGoogle Scholar
  32. 32.
    Matusita K, Sakka S. Kinetic study on crystallization of glass by differential thermal analysis—criterion on application of Kissinger plot. J Non-Cryst Solids. 1980;38–39:741–6.CrossRefGoogle Scholar
  33. 33.
    Ozawa T. A modified method for kinetic analysis of thermoanalytical data. J Therm Anal. 1976;9:369–73.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Jelena D. Nikolić
    • 1
    Email author
  • Vladimir D. Živanović
    • 1
  • Srdjan D. Matijašević
    • 1
  • Jovica N. Stojanović
    • 1
  • Snežana R. Grujić
    • 2
  • Sonja V. Smiljanić
    • 2
  • Vladimir S. Topalović
    • 1
  1. 1.Institute for the Technology of Nuclear and Other Mineral Raw MaterialsBelgradeSerbia
  2. 2.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia

Personalised recommendations