Abstract
This paper has been utilizing the simultaneous thermogravimetric analysis and differential scanning calorimetry (TG–DSC) to investigate the thermal decomposition of nitro-HTPB as an energetic binder. Data on thermal stability along with the decomposition kinetics of energetic materials are required to better comprehend their decomposition mechanism and the hazards involved in their handling, storage and processing. The thermal behaviors of different nitro-HTPB samples with various nitro group contents were determined. Decomposition kinetic was investigated by evaluating the influence of DSC heating rate (10, 20, 30 and 40 °C min−1) on the behavior of a nitro-HTPB sample. The results as expected showed that the decomposition temperature of the nitro-HTPB decreases with the increase in the DSC heating rate, while thermal decomposition of the sample followed a first-order law. The kinetic and thermodynamic parameters of the nitro-HTPB decomposition under ambient pressure were obtained from the resulted DSC data via non-isothermal methods proposed by ASTM E698 and Flynn–Wall–Ozawa. Also, the critical temperature of the nitro-HTPB was estimated at about 181 °C.
This is a preview of subscription content, access via your institution.









References
Stacer RG, Husband DM. Molecular structure of the ideal solid propellant binder. Propellants Explos Pyrotech. 1991;16:167–76.
Manjari R, Joseph V, Pandureng L, Sriram T. Structure-property relationship of HTPB-based propellants. I. Effect of hydroxyl value of HTPB resin. J Appl Polym Sci. 1993;48:271–8.
Shamsipur M, Pourmortazavi SM, Hajimirsadeghi SS, Atifeh SM. Effect of functional group on thermal stability of cellulose derivative energetic polymers. Fuel. 2012;95:394–9.
Rocco JA, Lima JE, Frutuoso A, Iha K, Ionashiro M, Matos J, et al. TG studies of a composite solid rocket propellant based on HTPB-binder. J Therm Anal Calorim. 2004;77:803–13.
Muthiah R, Krishnamurthy V, Gupta B. Rheology of HTPB propellant. I. Effect of solid loading, oxidizer particle size, and aluminum content. J Appl Polym Sci. 1992;44:2043–52.
Mahkam M, Nabati M, Latifpour A, Aboudi J. Synthesis and characterization of new nitrogen-rich polymers as candidates for energetic applications. Des Monomers Polym. 2014;17:453–7.
Agrawal JP. Some new high energy materials and their formulations for specialized applications. Propellants Explos Pyrotech. 2005;30:316–28.
Badgujar D, Talawar M, Asthana S, Mahulikar P. Advances in science and technology of modern energetic materials: an overview. J Hazard Mater. 2008;151:289–305.
Agrawal JP. Some new high energy materials and their formulations for specialized applications. Propellants Explos Pyrotech. 2005;30:316–28.
Eroglu MS, Hazer B, Güven O. Synthesis and characterization of hydroxyl terminated poly(butadiene)-g-poly(glycidyl azide) copolymer as a new energetic propellant binder. Polym Bull. 1996;36:695–701.
Agrawal JP. Recent trends in high-energy materials. Prog Energy Combust Sci. 1998;24:1–30.
Colclough ME, Desai H, Millar RW, Paul NC, Stewart MJ, Golding P. Energetic polymers as binders in composite propellants and explosives. Polym Adv Technol. 1994;5:554–60.
Millar RW, Colclough ME, Desai H, Golding P, Honey PJ, Paul NC, Sanderson AJ, Stewart MJ. Novel syntheses of energetic materials using dinitrogen pentoxide. In: Albright LF, Carr RVC, Schmitt RJ, editors. Nitration recent laboratory and industrial development, ACS Symposium Series, vol. 623. 1996. p. 104–121 [Chapter 11].
Millar R, Colclough M, Golding P, Honey P, Paul N, Sanderson A, et al. New synthesis routes for energetic materials using dinitrogen pentoxide [and discussion]. Philos Trans R Soc Lond Ser A Phys Eng Sci. 1992;339(1654):305–19.
Talawar M, Sivabalan R, Anniyappan M, Gore G, Asthana S, Gandhe B. Emerging trends in advanced high energy materials. Combust Explos Shock. 2007;43:62–72.
Gaur B, Lochab B, Choudhary V, Varma I. Azido polymers—energetic binders for solid rocket propellants. J Macromol Sci Part C Polym Rev. 2003;43:505–45.
Millar RW, Philbin SP. Clean nitrations: novel syntheses of nitramines and nitrate esters by nitrodesilylation reactions using dinitrogen pentoxide. Tetrahedron. 1997;53:4371–86.
Chien J, Kohara T, Lillya C, Sarubbi T, Su BH, Miller R. Phase transfer-catalyzed nitromercuration of diene polymers. J Polym Sci Polym Chem Ed. 1980;18(8):2723–9.
Lugadet F, Deffieux A, Fontanille M. Synthese de polybutadienes nitres hydroxytelecheliques par nitromercuration-demercuration. Etude de la demercuration et caracterisation des polybutadienes nitres. Eur Polym J. 1990;26:1035–40.
Pourmortazavi SM, Hajimirsadeghi SS, Hosseini SG. Characterization of the aluminum/potassium chlorate mixtures by simultaneous TG–DTA. J Therm Anal Calorim. 2006;84:557–61.
Pourmortazavi SM, Fathollahi M, Hajimirsadeghi SS, Hosseini SG. Thermal behavior of aluminum powder, potassium perchlorate mixtures by DTA, TG. Thermochim Acta. 2006;443:129–31.
Fathollahi M, Pourmortazavi SM, Hosseini SG. The effect of the particle size of potassium chlorate in pyrotechnic compositions. Combust Flame. 2004;138:304–6.
Hosseini SG, Pourmortazavi SM, Hajimirsadeghi SS. Thermal decomposition of pyrotechnic mixtures containing sucrose with either potassium chlorate or potassium perchlorate. Combust Flame. 2005;141:322–6.
Singh G, Kapoor IPS, Mannan SM, Kaur J. Studies on energetic compounds, Part 8: thermolysis of salts of HNO3 and HClO4. J Hazard Mater. 2000;A79:1–18.
Zeman S. New aspects of initiation reactivities of energetic materials demonstrated on nitramines. J Hazard Mater. 2006;A132:155–64.
Keshavarz MH. Simple method for prediction of activation energies of the thermal decomposition of nitramines. J Hazard Mater. 2009;162:1557–62.
Shekhar Pant C, Santosh MS, Banerjee S, Khanna PK. Single step synthesis of nitro-functionalized hydroxyl-terminated polybutadiene. Propellants Explos Pyrotech. 2013;38:748–53.
Turner AG, Davis LP. Decomposition pathways leading to HONO for nitroalkenes. J Energ Mater. 1984;2:191–204.
ASTM E 698-05. Standard test method for Arrhenius kinetic constants for thermally unstable materials.
Sunitha M, Reghunadhan Nair C, Krishnan K, Ninan K. Kinetics of Alder-ene reaction of Tris(2-allylphenoxy) triphenoxycyclotriphosphazene and bismaleimides: a DSC study. Thermochim Acta. 2001;374:159–69.
Pourmortazavi SM, Kohsari I, Teimouri MB, Hajimirsadeghi SS. Thermal behaviour kinetic study of the dihydroglyoxime and dichloroglyoxime. Mater Lett. 2007;61:4670–4.
Shamsipur M, Pourmortazavi SM, Hajimirsadeghi SS. Investigation on decomposition kinetics and thermal properties of copper fueled pyrotechnic compositions. Combust Sci Technol. 2011;183:575–87.
Ma H, Yan B, Li Z, Guan Y, Song J, Xu K, et al. Preparation, non-isothermal decomposition kinetics, heat capacity and adiabatic time-to-explosion of NTO· DNAZ. J Hazard Mater. 2009;169:1068–73.
Roduit B, Xia L, Folly P, Berger B, Mathieu J, Sarbach A, et al. The simulation of the thermal behavior of energetic materials based on DSC and HFC signals. J Therm Anal Calorim. 2008;93:143–52.
Pourmortazavi SM, Hosseini S, Rahimi-Nasrabadi M, Hajimirsadeghi S, Momenian H. Effect of nitrate content on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;162:1141–4.
Pourmortazavi SM, Hajimirsadeghi SS, Kohsari I, Fathollahi M, Hosseini SG. Thermal decomposition of pyrotechnic mixtures containing either aluminum or magnesium powder as fuel. Fuel. 2008;87:244–51.
Pisharath S, Ang HG. Synthesis and thermal decomposition of GAP–Poly (BAMO) copolymer. Polym Degrad Stab. 2007;92(7):1365–77.
Rocco J, Lima J, Frutuoso A, Iha K, Ionashiro M, Matos J, et al. Thermal degradation of a composite solid propellant examined by DSC. J Therm Anal Calorim. 2004;75:551–7.
Salla J, Morancho J, Cadenato A, Ramis X. Non-isothermal degradation of a thermoset powder coating in inert and oxidant atmospheres. J Therm Anal Calorim. 2003;72(2):719–28.
Olszak-Humienik M, Mozejko J. Thermodynamic functions of activated complexes created in thermal decomposition processes of sulphates. Thermochim Acta. 2000;344:73–9.
Tompa AS, Boswell RF. Thermal stability of a plastic bonded explosive. Thermochim Acta. 2000;357:169–75.
Shamsipur M, Pourmortazavi SM, Roushani M, Miran Beigi AA. Thermal behavior and non-isothermal kinetic studies on titanium hydride-fueled binary pyrotechnic compositions. Combust Sci Technol. 2013;185:122–33.
Pickard JM. Critical ignition temperature. Thermochim Acta. 2002;392:37–40.
Tonglai Z, Rongzu H, Yi X, Fuping L. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC. Thermochim Acta. 1994;244:171–6.
Tonglai Z, Rongzu H, Yi X, Fuping L. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC. Thermochim Acta. 1994;244:171–6.
Shamsipur M, Pourmortazavi SM, Fathollahi M. Kinetic parameters of binary iron/oxidant pyrolants. J Energ Mater. 2012;30:97–106.
Wang Q, Wang L, Zhang X, Mi Z. Thermal stability and kinetic of decomposition of nitrated HTPB. J Hazard Mater. 2009;172(2):1659–64.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Abusaidi, H., Ghaieni, H.R., Pourmortazavi, S.M. et al. Effect of nitro content on thermal stability and decomposition kinetics of nitro-HTPB. J Therm Anal Calorim 124, 935–941 (2016). https://doi.org/10.1007/s10973-015-5178-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10973-015-5178-8
Keywords
- Nitro-HTPB
- Thermal stability
- TG–DSC
- ASTM
- FWO
- Non-isothermal kinetic