Skip to main content

Effect of nitro content on thermal stability and decomposition kinetics of nitro-HTPB

Abstract

This paper has been utilizing the simultaneous thermogravimetric analysis and differential scanning calorimetry (TG–DSC) to investigate the thermal decomposition of nitro-HTPB as an energetic binder. Data on thermal stability along with the decomposition kinetics of energetic materials are required to better comprehend their decomposition mechanism and the hazards involved in their handling, storage and processing. The thermal behaviors of different nitro-HTPB samples with various nitro group contents were determined. Decomposition kinetic was investigated by evaluating the influence of DSC heating rate (10, 20, 30 and 40 °C min−1) on the behavior of a nitro-HTPB sample. The results as expected showed that the decomposition temperature of the nitro-HTPB decreases with the increase in the DSC heating rate, while thermal decomposition of the sample followed a first-order law. The kinetic and thermodynamic parameters of the nitro-HTPB decomposition under ambient pressure were obtained from the resulted DSC data via non-isothermal methods proposed by ASTM E698 and Flynn–Wall–Ozawa. Also, the critical temperature of the nitro-HTPB was estimated at about 181 °C.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Stacer RG, Husband DM. Molecular structure of the ideal solid propellant binder. Propellants Explos Pyrotech. 1991;16:167–76.

    CAS  Article  Google Scholar 

  2. Manjari R, Joseph V, Pandureng L, Sriram T. Structure-property relationship of HTPB-based propellants. I. Effect of hydroxyl value of HTPB resin. J Appl Polym Sci. 1993;48:271–8.

    CAS  Article  Google Scholar 

  3. Shamsipur M, Pourmortazavi SM, Hajimirsadeghi SS, Atifeh SM. Effect of functional group on thermal stability of cellulose derivative energetic polymers. Fuel. 2012;95:394–9.

    CAS  Article  Google Scholar 

  4. Rocco JA, Lima JE, Frutuoso A, Iha K, Ionashiro M, Matos J, et al. TG studies of a composite solid rocket propellant based on HTPB-binder. J Therm Anal Calorim. 2004;77:803–13.

    CAS  Article  Google Scholar 

  5. Muthiah R, Krishnamurthy V, Gupta B. Rheology of HTPB propellant. I. Effect of solid loading, oxidizer particle size, and aluminum content. J Appl Polym Sci. 1992;44:2043–52.

    CAS  Article  Google Scholar 

  6. Mahkam M, Nabati M, Latifpour A, Aboudi J. Synthesis and characterization of new nitrogen-rich polymers as candidates for energetic applications. Des Monomers Polym. 2014;17:453–7.

    CAS  Article  Google Scholar 

  7. Agrawal JP. Some new high energy materials and their formulations for specialized applications. Propellants Explos Pyrotech. 2005;30:316–28.

    CAS  Article  Google Scholar 

  8. Badgujar D, Talawar M, Asthana S, Mahulikar P. Advances in science and technology of modern energetic materials: an overview. J Hazard Mater. 2008;151:289–305.

    CAS  Article  Google Scholar 

  9. Agrawal JP. Some new high energy materials and their formulations for specialized applications. Propellants Explos Pyrotech. 2005;30:316–28.

    CAS  Article  Google Scholar 

  10. Eroglu MS, Hazer B, Güven O. Synthesis and characterization of hydroxyl terminated poly(butadiene)-g-poly(glycidyl azide) copolymer as a new energetic propellant binder. Polym Bull. 1996;36:695–701.

    CAS  Google Scholar 

  11. Agrawal JP. Recent trends in high-energy materials. Prog Energy Combust Sci. 1998;24:1–30.

    CAS  Article  Google Scholar 

  12. Colclough ME, Desai H, Millar RW, Paul NC, Stewart MJ, Golding P. Energetic polymers as binders in composite propellants and explosives. Polym Adv Technol. 1994;5:554–60.

    CAS  Article  Google Scholar 

  13. Millar RW, Colclough ME, Desai H, Golding P, Honey PJ, Paul NC, Sanderson AJ, Stewart MJ. Novel syntheses of energetic materials using dinitrogen pentoxide. In: Albright LF, Carr RVC, Schmitt RJ, editors. Nitration recent laboratory and industrial development, ACS Symposium Series, vol. 623. 1996. p. 104–121 [Chapter 11].

  14. Millar R, Colclough M, Golding P, Honey P, Paul N, Sanderson A, et al. New synthesis routes for energetic materials using dinitrogen pentoxide [and discussion]. Philos Trans R Soc Lond Ser A Phys Eng Sci. 1992;339(1654):305–19.

    CAS  Article  Google Scholar 

  15. Talawar M, Sivabalan R, Anniyappan M, Gore G, Asthana S, Gandhe B. Emerging trends in advanced high energy materials. Combust Explos Shock. 2007;43:62–72.

    Article  Google Scholar 

  16. Gaur B, Lochab B, Choudhary V, Varma I. Azido polymers—energetic binders for solid rocket propellants. J Macromol Sci Part C Polym Rev. 2003;43:505–45.

    Article  Google Scholar 

  17. Millar RW, Philbin SP. Clean nitrations: novel syntheses of nitramines and nitrate esters by nitrodesilylation reactions using dinitrogen pentoxide. Tetrahedron. 1997;53:4371–86.

    CAS  Article  Google Scholar 

  18. Chien J, Kohara T, Lillya C, Sarubbi T, Su BH, Miller R. Phase transfer-catalyzed nitromercuration of diene polymers. J Polym Sci Polym Chem Ed. 1980;18(8):2723–9.

    CAS  Article  Google Scholar 

  19. Lugadet F, Deffieux A, Fontanille M. Synthese de polybutadienes nitres hydroxytelecheliques par nitromercuration-demercuration. Etude de la demercuration et caracterisation des polybutadienes nitres. Eur Polym J. 1990;26:1035–40.

    CAS  Article  Google Scholar 

  20. Pourmortazavi SM, Hajimirsadeghi SS, Hosseini SG. Characterization of the aluminum/potassium chlorate mixtures by simultaneous TG–DTA. J Therm Anal Calorim. 2006;84:557–61.

    CAS  Article  Google Scholar 

  21. Pourmortazavi SM, Fathollahi M, Hajimirsadeghi SS, Hosseini SG. Thermal behavior of aluminum powder, potassium perchlorate mixtures by DTA, TG. Thermochim Acta. 2006;443:129–31.

    CAS  Article  Google Scholar 

  22. Fathollahi M, Pourmortazavi SM, Hosseini SG. The effect of the particle size of potassium chlorate in pyrotechnic compositions. Combust Flame. 2004;138:304–6.

    CAS  Article  Google Scholar 

  23. Hosseini SG, Pourmortazavi SM, Hajimirsadeghi SS. Thermal decomposition of pyrotechnic mixtures containing sucrose with either potassium chlorate or potassium perchlorate. Combust Flame. 2005;141:322–6.

    CAS  Article  Google Scholar 

  24. Singh G, Kapoor IPS, Mannan SM, Kaur J. Studies on energetic compounds, Part 8: thermolysis of salts of HNO3 and HClO4. J Hazard Mater. 2000;A79:1–18.

    Article  Google Scholar 

  25. Zeman S. New aspects of initiation reactivities of energetic materials demonstrated on nitramines. J Hazard Mater. 2006;A132:155–64.

    Article  Google Scholar 

  26. Keshavarz MH. Simple method for prediction of activation energies of the thermal decomposition of nitramines. J Hazard Mater. 2009;162:1557–62.

    CAS  Article  Google Scholar 

  27. Shekhar Pant C, Santosh MS, Banerjee S, Khanna PK. Single step synthesis of nitro-functionalized hydroxyl-terminated polybutadiene. Propellants Explos Pyrotech. 2013;38:748–53.

    CAS  Article  Google Scholar 

  28. Turner AG, Davis LP. Decomposition pathways leading to HONO for nitroalkenes. J Energ Mater. 1984;2:191–204.

    CAS  Article  Google Scholar 

  29. ASTM E 698-05. Standard test method for Arrhenius kinetic constants for thermally unstable materials.

  30. Sunitha M, Reghunadhan Nair C, Krishnan K, Ninan K. Kinetics of Alder-ene reaction of Tris(2-allylphenoxy) triphenoxycyclotriphosphazene and bismaleimides: a DSC study. Thermochim Acta. 2001;374:159–69.

    CAS  Article  Google Scholar 

  31. Pourmortazavi SM, Kohsari I, Teimouri MB, Hajimirsadeghi SS. Thermal behaviour kinetic study of the dihydroglyoxime and dichloroglyoxime. Mater Lett. 2007;61:4670–4.

    CAS  Article  Google Scholar 

  32. Shamsipur M, Pourmortazavi SM, Hajimirsadeghi SS. Investigation on decomposition kinetics and thermal properties of copper fueled pyrotechnic compositions. Combust Sci Technol. 2011;183:575–87.

    CAS  Article  Google Scholar 

  33. Ma H, Yan B, Li Z, Guan Y, Song J, Xu K, et al. Preparation, non-isothermal decomposition kinetics, heat capacity and adiabatic time-to-explosion of NTO· DNAZ. J Hazard Mater. 2009;169:1068–73.

    CAS  Article  Google Scholar 

  34. Roduit B, Xia L, Folly P, Berger B, Mathieu J, Sarbach A, et al. The simulation of the thermal behavior of energetic materials based on DSC and HFC signals. J Therm Anal Calorim. 2008;93:143–52.

    CAS  Article  Google Scholar 

  35. Pourmortazavi SM, Hosseini S, Rahimi-Nasrabadi M, Hajimirsadeghi S, Momenian H. Effect of nitrate content on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;162:1141–4.

    CAS  Article  Google Scholar 

  36. Pourmortazavi SM, Hajimirsadeghi SS, Kohsari I, Fathollahi M, Hosseini SG. Thermal decomposition of pyrotechnic mixtures containing either aluminum or magnesium powder as fuel. Fuel. 2008;87:244–51.

    CAS  Article  Google Scholar 

  37. Pisharath S, Ang HG. Synthesis and thermal decomposition of GAP–Poly (BAMO) copolymer. Polym Degrad Stab. 2007;92(7):1365–77.

    CAS  Article  Google Scholar 

  38. Rocco J, Lima J, Frutuoso A, Iha K, Ionashiro M, Matos J, et al. Thermal degradation of a composite solid propellant examined by DSC. J Therm Anal Calorim. 2004;75:551–7.

    CAS  Article  Google Scholar 

  39. Salla J, Morancho J, Cadenato A, Ramis X. Non-isothermal degradation of a thermoset powder coating in inert and oxidant atmospheres. J Therm Anal Calorim. 2003;72(2):719–28.

    CAS  Article  Google Scholar 

  40. Olszak-Humienik M, Mozejko J. Thermodynamic functions of activated complexes created in thermal decomposition processes of sulphates. Thermochim Acta. 2000;344:73–9.

    CAS  Article  Google Scholar 

  41. Tompa AS, Boswell RF. Thermal stability of a plastic bonded explosive. Thermochim Acta. 2000;357:169–75.

    Article  Google Scholar 

  42. Shamsipur M, Pourmortazavi SM, Roushani M, Miran Beigi AA. Thermal behavior and non-isothermal kinetic studies on titanium hydride-fueled binary pyrotechnic compositions. Combust Sci Technol. 2013;185:122–33.

    CAS  Article  Google Scholar 

  43. Pickard JM. Critical ignition temperature. Thermochim Acta. 2002;392:37–40.

    Article  Google Scholar 

  44. Tonglai Z, Rongzu H, Yi X, Fuping L. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC. Thermochim Acta. 1994;244:171–6.

    Article  Google Scholar 

  45. Tonglai Z, Rongzu H, Yi X, Fuping L. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC. Thermochim Acta. 1994;244:171–6.

    Article  Google Scholar 

  46. Shamsipur M, Pourmortazavi SM, Fathollahi M. Kinetic parameters of binary iron/oxidant pyrolants. J Energ Mater. 2012;30:97–106.

    CAS  Article  Google Scholar 

  47. Wang Q, Wang L, Zhang X, Mi Z. Thermal stability and kinetic of decomposition of nitrated HTPB. J Hazard Mater. 2009;172(2):1659–64.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seied Mahdi Pourmortazavi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abusaidi, H., Ghaieni, H.R., Pourmortazavi, S.M. et al. Effect of nitro content on thermal stability and decomposition kinetics of nitro-HTPB. J Therm Anal Calorim 124, 935–941 (2016). https://doi.org/10.1007/s10973-015-5178-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5178-8

Keywords

  • Nitro-HTPB
  • Thermal stability
  • TG–DSC
  • ASTM
  • FWO
  • Non-isothermal kinetic