Skip to main content
Log in

Comparative study of turbulent heat transfer of nanofluids

Effect of thermophysical properties on figure-of-merit ratio

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nanofluids are considered to offer important advantages over conventional heat transfer fluids, but their thermophysical properties are not known precisely. In this paper, essential aspects of the turbulent-flow convective heat transfer of nanofluids are compared in detail based on few figures of merits relevant to their applications. The considered aspects were: (1) model selection—the nanofluid thermophysical properties (related to heat transfer performance) and the comparison criteria over their base fluids, and (2) effectiveness—the enhancement of the heat transfer coefficients of nanofluids over their base fluids. Few different models selected from the literature are used to express nanofluid properties in terms of particle loading, and they lead to different results in a classical problem of replacement of a single fluid by a nanofluid in a given application. As the base of comparison, the pumping power similarity condition was adopted, and the analysis revealed that nanofluid benefits in terms of energy performance are questionable, even if the heat transfer enhancement is obvious. Finally, this study aims to quantify the accuracy of existing models for nanofluid evaluation. The results reported in the present paper are believed to be useful for the thermal optimization of nanofluid flow inside tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

c p :

Specific heat (J kg−1 K−1)

D :

Hydraulic diameter (m)

f :

Fanning friction factor (–)

FOM1:

Figure of merit adopted from Ref. [43] (–)

FOM2:

Figure of merit adopted from Ref. [24] (–)

h :

Heat transfer coefficient (W m−2 K−1)

k :

Thermal conductivity (W m−1 K−1)

L :

Channel length (m)

Mo :

Mouromtseff number (–)

Nu :

Nusselt number (–)

p :

Pressure (Pa)

P :

Pumping power (W)

R :

Figure-of-merit ratio (–)

Pr :

Prandtl number (–)

Re :

Reynolds number (–)

T :

Temperature (K)

q :

Wall heat flux (W m−2)

Q :

Volume flow rate (W)

x, y, z :

Cartesian coordinates (m)

v :

Velocity (m s−1)

β :

Volumetric expansion coefficient (K−1)

φ :

Volume fraction of particles (%)

ρ :

Density (kg m−3)

μ :

Fluid dynamic viscosity (kg m−1 s−1)

bf:

Refers to base fluid

f:

Fluid

nf:

Refers to nanofluid property

r:

Refers to “nanofluid/base fluid” ratio

References

  1. Wong KV, De Leon O. Applications of nanofluids: current and future. Adv Mech Eng. 2010; Article ID 519659:1–11.

  2. Godson L, Raja B, Lal DM, Wongwises S. Enhancement of heat transfer using nanofluids—an overview. Renew Sustain Energy Rev. 2010;14:629–41.

    Article  CAS  Google Scholar 

  3. Xie H, Yu W, Li Y, Chen L. Discussion on the thermal conductivity enhancement of nanofluids. Nanoscale Res Lett. 2011;6:124–9.

    Article  Google Scholar 

  4. Xuan Y, Li Q. Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow. 2000;21:58–64.

    Article  CAS  Google Scholar 

  5. Yu W, Xie, A Review on nanofluids: preparation, stability mechanisms, and applications. J Nanomater. 2012; Article ID 435873:1–17.

  6. Hemmat Esfe M, Saedodin S. Turbulent forced convection heat transfer and thermophysical properties of MgO–water nanofluid with consideration of different nanoparticles diameter, an empirical study. J Therm Anal Calorim. 2015;119:1205–13.

    Article  CAS  Google Scholar 

  7. Hemmat Esfe M, Saedodin S, Bahiraei M, Toghraie D, Mahian O, Wongwises S. Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network. J Therm Anal Calorim. 2014;. doi:10.1007/s10973-014-3771-x.

    Google Scholar 

  8. Hemmat Esfe M, Saedodin S, Wongwises S, Toghraie D. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. J Therm Anal Calorim. 2015;119:1817–24.

    Article  CAS  Google Scholar 

  9. Barbes B, Paramo R, Blanco E, Casanova C. Thermal conductivity and specific heat capacity measurements of CuO nanofluids. J Therm Anal Calorim. 2014;115:1883–91.

    Article  CAS  Google Scholar 

  10. Sarkar J. A critical review on convective heat transfer correlations of nanofluids. Renew Sustain Energy Rev. 2011;15:3271–7.

    Article  CAS  Google Scholar 

  11. Prasher R, Song D, Wang J, Phelan P. Measurements of nanofluid viscosity and it’s implications for thermal applications. Appl Phys Lett. 2006;89:133108-3.

    Google Scholar 

  12. Escher W, Brunschwiler T, Shalkevich N, Shalkevich A, Burgi T, Michel B, Poulikakos D. On the cooling of electronics with nanofluids. J Heat Transf. 2011;133:1–11.

    Google Scholar 

  13. Moghadassi AR, Masoud Hosseini S, Henneke D, Elkamel A. A model of nanofluids effective thermal conductivity based on dimensionless groups. J Therm Anal Calorim. 2009;96:81–4.

    Article  CAS  Google Scholar 

  14. Barbes B, Paramo R, Blanco E, Pastoriza-Gallego MJ, Pineiro MM, Legido JL, Casanova C. Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids. J Therm Anal Calorim. 2013;111:1615–25.

    Article  CAS  Google Scholar 

  15. Hemmat Esfe M, Saedodin S, Mahian O, Wongwises S. Thermal conductivity of Al2O3/water nanofluids: measurement, correlation, sensitivity analysis, and comparisons with literature reports. J Therm Anal Calorim. 2014;117:675–81.

    Article  CAS  Google Scholar 

  16. Bahiraei M, Mashaei PR. Using nanofluid as a smart suspension in cooling channels with discrete heat sources: numerical investigation and modeling. J Therm Anal Calorim. 2015;119:2079–91.

    Article  CAS  Google Scholar 

  17. Bashirnezhad K, Rashidi MM, Yang Z, Bazri S, Yan WM. A comprehensive review of last experimental studies on thermal conductivity of nanofluids. J Therm Anal Calorim. 2015;122:863–84.

    Article  CAS  Google Scholar 

  18. Malvandi A, Ganji DD. Brownian motion and thermophoresis effects on slip flow of alumina/water nanofluid inside a circular microchannel in the presence of a magnetic field. Int J Therm Sci. 2014;84:196–206.

    Article  CAS  Google Scholar 

  19. Malvandi A, Ganji DD. Magneto hydro dynamic mixed convective flow of Al2O3–water nanofluid inside a vertical microtube. J Magn Magn Mater. 2014;369:132–41.

    Article  CAS  Google Scholar 

  20. Malvandi A, Moshizi SA, Ganji DD. Effect of magnetic fields on heat convection inside a concentric annulus filled with Al2O3–water nanofluid. Adv Powder Technol. 2014;25:1817–24.

    Article  CAS  Google Scholar 

  21. Vizureanu P, Cimpoesu N, Radu V, Agop M. Investigations on thermal conductivity of carbon nanotubes reinforced composites. Exp Heat Transf. 2015;28:37–57.

    Article  CAS  Google Scholar 

  22. Yu W, France DM, Timofeeva EV, Singh D, Routbort JL. Thermophysical property-related comparison criteria for nanofluid heat transfer enhancement in turbulent flow. Appl Phys Lett. 2010;96:213109.

    Article  Google Scholar 

  23. Timofeeva EV, Yu W, France DM, Singh D, Routbort JL. Nanofluids for heat transfer: an engineering approach. Nanoscale Res Lett. 2011;6:1–7.

    Article  Google Scholar 

  24. Yu W, France DM, Timofeeva EV, Singh D, Routbort JL. Comparative review of turbulent heat transfer of nanofluids. Int J Heat Mass Transf. 2012;55:5380–96.

    Article  CAS  Google Scholar 

  25. Mansour RB, Galanis N, Nguyen CT. Effect of uncertainties in physical properties on forced convection heat transfer with nanofluids. Appl Therm Eng. 2007;27:240–9.

    Article  Google Scholar 

  26. Ho CJ, Chen MW, Li ZW. Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity. Int J Heat Mass Transf. 2008;51:4506–16.

    Article  CAS  Google Scholar 

  27. Oztop HF, Abu-Nada E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int J Heat Fluid Flow. 2008;29:1326–36.

    Article  Google Scholar 

  28. Manca O, Nardini S, Ricci D. Enhancement of forced convection in ribbed channels by nanofluids. Appl Therm Eng. 2012;37:280–92.

    Article  CAS  Google Scholar 

  29. Gosselin L, da Silva A. Combined heat transfer and power dissipation optimization of nanofluid flow. Appl Phys Lett. 2004;85:4160–2.

    Article  CAS  Google Scholar 

  30. Bianco V, Manca O, Nardini S. Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube. Int J Therm Sci. 2011;50:341–9.

    Article  CAS  Google Scholar 

  31. Vajjha RS, Das DK, Mahagaonkar BM. Density measurements of different nanofluids and their comparison with theory. Pet Sci Technol. 2009;27:612–24.

    Article  CAS  Google Scholar 

  32. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf. 1998;11:151–70.

    Article  CAS  Google Scholar 

  33. Li Q, Xuan Y. Convective heat transfer performances of fluids with nano-particles. In: Proceedings of the 12th international heat transfer conference. Grenoble, France; 2002. p. 483–8.

  34. Dittus FW, Boelter LMK. Univ. California (Berkeley) Publ. Eng. 1930; 2:443.

  35. Malvandi A, Ganji DD. Effects of nanoparticle migration and asymmetric heating on magneto hydro dynamic forced convection of alumina/water nanofluid in microchannels. Eur J Mech B/Fluids. 2015;52:169–84.

    Article  Google Scholar 

  36. Kazemi-Beydokhti A, Heris SZ. Thermal optimization of combined heat and power (CHP) systems using nanofluids. Energy. 2012;44:241–7.

    Article  CAS  Google Scholar 

  37. Mahmud S, Fraser RA. Second law analysis of forced convection in a circular duct for non-Newtonian fluids. Energy. 2006;31:1890–908.

    Article  CAS  Google Scholar 

  38. Myat A, Thu K, Kim YD, Saha BB, Choon NK. Entropy generation minimization: a practical approach for performance evaluation of temperature cascaded co-generation plants. Energy. 2012;46:493–521.

    Article  Google Scholar 

  39. Poulikakos D, Johnson JM. Second law analysis of combined heat and mass transfer phenomena in external flow. Energy. 1989;14:67–73.

    Article  CAS  Google Scholar 

  40. Mouromtseff IE. Water and forced-air cooling of vacuum tubes. Proc IRE. 1942;30:190–205.

    Article  Google Scholar 

  41. Bergles AE. Evolution of cooling technology for electrical, electronic, and microelectronic equipment. IEEE Trans Compon Packag Technol. 2003;26:6–15.

    Article  Google Scholar 

  42. Bergles AE, Bar-Cohen A. Advances in thermal modeling of electronic components and systems, vol. 2. New York: ASME Press; 1990.

    Google Scholar 

  43. Yeh LT, Chu RC. Thermal management of microelectronic equipment—heat transfer theory, analysis methods, and design practices. New York: ASME Press; 2002.

    Book  Google Scholar 

  44. Blasius H. Das Ähnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten, Forschungsarbeiten des Ingenieurwesens. Verein Deutscher Ingenieure. 1913;131:41.

    Google Scholar 

  45. Bianco V, Manca O, Nardini S. Performance analysis of turbulent convection heat transfer of Al2O3 water-nanofluid in circular tubes at constant wall temperature. Energy. 2014;77:403–13.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina Adriana Minea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minea, A.A. Comparative study of turbulent heat transfer of nanofluids. J Therm Anal Calorim 124, 407–416 (2016). https://doi.org/10.1007/s10973-015-5166-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5166-z

Keywords

Navigation